Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Biochemistry ; 54(21): 3320-7, 2015 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-25961377

RESUMO

Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c' (AXCP) and Shewanella frigidimarina cytochrome c' (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of ν(NO) (1651-1671 cm(-1)) and ν(FeNO) (519-536 cm(-1)) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the ν(NO) and ν(FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) → (NO)π* backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent of σ-donation from the NO(π*) to the Fe(II) (dz(2)) orbital. For R124A AXCP, correlation of vibrational and crystallographic data is complicated by distal and proximal 5cNO populations. Overall, this study highlights the complex structure-vibrational relationships of 5cNO proteins that allow RR spectra to distinguish 5cNO coordination in certain electrostatic and steric environments.


Assuntos
Alcaligenes/enzimologia , Citocromos c'/química , Heme/química , Óxido Nítrico/química , Shewanella/enzimologia , Análise Espectral Raman , Alcaligenes/química , Modelos Moleculares , Shewanella/química
2.
J Biol Inorg Chem ; 20(4): 675-86, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25792378

RESUMO

The cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct.


Assuntos
Monóxido de Carbono/química , Citocromos c'/química , Óxido Nítrico/química , Sítios de Ligação , Monóxido de Carbono/metabolismo , Citocromos c'/metabolismo , Conformação Molecular , Óxido Nítrico/metabolismo , Shewanella/enzimologia
3.
Nat Chem Biol ; 5(2): 94-6, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19109594

RESUMO

The aerobic respiratory chain of Escherichia coli has two terminal quinol oxidases: cytochrome bo and cytochrome bd. Cytochrome bd was thought to function solely to facilitate micro-aerobic respiration. However, it has recently been shown to be overexpressed under conditions of nitric oxide (NO) stress; we show here that cytochrome bd is crucial for protecting E. coli cells from NO-induced growth inhibition by virtue of its fast NO dissociation rate.


Assuntos
Citocromos/metabolismo , Complexo de Proteínas da Cadeia de Transporte de Elétrons/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Óxido Nítrico/metabolismo , Oxirredutases/metabolismo , Grupo dos Citocromos b , Escherichia coli/enzimologia , Escherichia coli/crescimento & desenvolvimento
4.
J Med Chem ; 60(8): 3498-3510, 2017 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-28363026

RESUMO

Photodynamic therapy (PDT) is a promising treatment strategy for malignant and nonmalignant lesions. 5-Aminolaevulinic acid (ALA) is used as a precursor of the photosensitizer, protoporphyrin IX (PpIX), in dermatology and urology. However, the effectiveness of ALA-PDT is limited by the relatively poor bioavailability of ALA and rapid conversion of PpIX to haem. The main goal of this study was to prepare and investigate a library of single conjugates designed to coadminister the bioactive agents ALA and hydroxypyridinone (HPO) iron chelators. A significant increase in intracellular PpIX levels was observed in all cell lines tested when compared to the administration of ALA alone. The higher PpIX levels observed using the conjugates correlated well with the observed phototoxicity following exposure of cells to light. Passive diffusion appears to be the main mechanism for the majority of ALA-HPOs investigated. This study demonstrates that ALA-HPOs significantly enhance phototherapeutic metabolite formation and phototoxicity.


Assuntos
Ácido Aminolevulínico/química , Fotoquimioterapia , Piridinas/química , Humanos , Células MCF-7
5.
Microbiology (Reading) ; 142(4): 765-774, 1996 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33725793

RESUMO

The photosynthetic proteobacterium Rhodobacter capsulatus was shown to be capable of dissimilatory Fe(III) reduction. Activity was expressed during anaerobic phototrophic and microaerobic growth with malate as the carbon source, but not during equivalent aerobic growth. A variety of Fe(III) complexes were demonstrated to act as substrates for intact cells and membrane fractions of strain N22DNAR+ using a ferrozine assay for Fe(II) formation. Rates of reduction appeared to be influenced by the reduction potentials of the Fe(III) complexes. However, Fe(III) complexed by citrate, which is readily reduced by Shewanella putrefaciens, was a poor substrate for dissimilation by R. capsulatus. The Fe(III)-reducing activity of R. capsulatus was located solely in the membrane fraction. The reduction of Fe(III) complexes by intact cells was inhibited by 2-heptyl-4-hydroxyquinoline-N-oxide (HQNO), suggesting the involvement of ubiquinol: cytochrome c oxidoreductases in the electron transport chain. Lack of sensitivity to myxothiazol plus data from mutant strains implies that the cytochrome bc 1 complex and cytochrome c 2 are not obligatory for dissimilation of Fe(III)(maltol)3. Alternative pathways of electron transfer to Fe(III) must hence operate in R. capsulatus. Using strain N22DNAR+, the reduction rate of Fe(III) complexed by nitrilotriacetic acid (NTA) was elevated compared to that of Fe(III)(maltol)3, and moreover was sensitive to myxothiazol. However, these differences were not observed in the absence of the electron donor malate. The governing factor for the reduction rate of Fe(III)(maltol)3 thus appears to be the limited Fe(III)-reducing activity, whilst the reduction rate of Fe(III) complexed by NTA is controlled by the flux of electrons through the respiratory chain. The use of mutant strains confirmed that the role of the cytochrome bc 1 complex in Fe(III) reduction becomes apparent only with the superior substrate. The energy-conserving nature of Fe(III) reduction by R. capsulatus was demonstrated by electrochromic measurements, with the endogenous carotenoid pigments being employed as indicators of membrane potential generation in intact cells. Using Fe(III)EDTA as electron acceptor, periods of membrane potential generation were directly proportional to the quantity of complex added, and were extended in the presence of HQNO. Fe(III)-dependent carotenoid bandshifts were abolished by addition of the protonophoric uncoupler carbonyl cyanide p-trifluoromethoxy-phenylhydrazone.

6.
J Biol Chem ; 278(30): 27758-65, 2003 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-12732647

RESUMO

Shewanella oneidensis MR-1 has the metabolic capacity to grow anaerobically using Fe(III) as a terminal electron acceptor. Growth under these conditions results in the de novo synthesis of a number of periplasmic c-type cytochromes, many of which are multiheme in nature and are thought to be involved in the Fe(III) respiratory process. To begin a biochemical study of these complex cytochromes, the mtrA gene that encodes an approximate 32-kDa periplasmic decaheme cytochrome has been heterologously expressed in Escherichia coli. Co-expression of mtrA with a plasmid that contains cytochrome c maturation genes leads to the assembly of a correctly targeted holoprotein, which covalently binds ten hemes. The recombinant MtrA protein has been characterized by magnetic circular dichroism, which shows that all ten hemes have bis-histidine axial ligation. EPR spectroscopy detected only eight of these hemes, all of which are low spin and provides evidence for a spin-coupled pair of hemes in the oxidized state. Redox titrations of MtrA have been carried out with optical- and EPR-monitored methods, and the hemes are shown to reduce over the potential range -100 to -400 mV. In intact cells of E. coli, MtrA is shown to obtain electrons from the host electron transport chain and pass these onto host oxidoreductases or a range of soluble Fe(III) species. This demonstrates the promiscuous nature of this decaheme cytochrome and its potential to serve as a soluble Fe(III) reductase in intact cells.


Assuntos
Quelantes/metabolismo , Citocromos/química , Citocromos/metabolismo , Escherichia coli/metabolismo , Ferro/metabolismo , Shewanella/metabolismo , Sequência de Aminoácidos , Divisão Celular , Dicroísmo Circular , Espectroscopia de Ressonância de Spin Eletrônica , Elétrons , Eletroforese em Gel de Poliacrilamida , Heme/química , Cinética , Modelos Biológicos , Dados de Sequência Molecular , Oxirredução , Oxigênio/metabolismo , Plasmídeos/metabolismo , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Frações Subcelulares , Temperatura , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA