Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biofouling ; 39(4): 385-398, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293709

RESUMO

In this study, epibiotic bacteria on the carapace of sea turtles at three different sites in the Persian Gulf were studied. Bacterial density counted using a Scanning Electron Microscope showed that the highest (9.4 × 106 ± 0.8 × 106 cm-2) and lowest (5.3 × 106 ± 0.4 × 106 cm-2) average bacterial densities were found on the green and hawksbill sea turtles, respectively. Bacterial community analysis using Illumina 16S rRNA gene sequencing showed that Gamma- and Alpha-proteobacteria were the dominant classes on all substrates. Some genera, such as Anaerolinea, were site- and substrate-specific. In general, bacterial communities on sea turtles differed from those on the non-living substrate, stones, and exhibited lower species richness and diversity compared to the latter. Despite some similarities, the majority of bacterial communities on the two sea turtles were different. This study provides baseline information about the epibiotic bacteria of sea turtles of different species.


Assuntos
Exoesqueleto , Tartarugas , Animais , Exoesqueleto/microbiologia , Bactérias/genética , Biofilmes , RNA Ribossômico 16S/genética , Tartarugas/microbiologia
2.
Biofouling ; 39(4): 359-370, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37293733

RESUMO

Despite the importance of outer membrane vesicles (OMVs) in benthic animal settlement, the underlying molecular mechanism remains elusive. Here, the impact of OMVs and OMVs synthesis-related tolB gene in Mytilus coruscus plantigrade settlement was tested. The OMVs were extracted from Pseudoalteromonas marina through density gradient centrifugation, and a tolB knockout strain, achieved by homologous recombination, was utilized for the investigation. Our results demonstrated that OMVs could significantly enhance M. coruscus plantigrades settlement. Deleting the tolB resulted in downregulation of c-di-GMP, accompanied by a reduction of OMV production, a decline in bacterial motility and increasing biofilm-forming ability. Enzyme treatment resulted in a 61.11% reduction in OMV-inducing activity and a 94.87% reduction in LPS content. Thus, OMVs regulate mussel settlement via LPS, and c-di-GMP is responsible for the OMV-inducing capacity. These findings provide new insights into the interactions between bacteria and mussels.


Assuntos
GMP Cíclico , Mytilus , Animais , Proteínas da Membrana Bacteriana Externa/genética , Biofilmes , GMP Cíclico/metabolismo , Lipopolissacarídeos , Mytilus/genética , Mytilus/fisiologia
3.
Int J Mol Sci ; 24(7)2023 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-37047504

RESUMO

The biofouling process refers to the undesirable accumulation of micro- and macro-organisms on manufactured surfaces [...].


Assuntos
Incrustação Biológica , Animais , Incrustação Biológica/prevenção & controle , Larva , Invertebrados
4.
Int J Mol Sci ; 24(13)2023 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-37445696

RESUMO

Biofouling is the growth of organisms on wet surfaces. Biofouling includes micro- (bacteria and unicellular algae) and macrofouling (mussels, barnacles, tube worms, bryozoans, etc.) and is a major problem for industries. However, the settlement and growth of some biofouling species, like oysters and corals, can be desirable. Thus, it is important to understand the process of biofouling in detail. Modern "omic" techniques, such as metabolomics, metagenomics, transcriptomics, and proteomics, provide unique opportunities to study biofouling organisms and communities and investigate their metabolites and environmental interactions. In this review, we analyze the recent publications that employ metagenomic, metabolomic, and proteomic techniques for the investigation of biofouling and biofouling organisms. Specific emphasis is given to metagenomics, proteomics and publications using combinations of different "omics" techniques. Finally, this review presents the future outlook for the use of "omics" techniques in marine biofouling studies. Like all trans-disciplinary research, environmental "omics" is in its infancy and will advance rapidly as researchers develop the necessary expertise, theory, and technology.


Assuntos
Incrustação Biológica , Briozoários , Animais , Proteômica , Bactérias , Tecnologia , Organismos Aquáticos/genética
5.
Luminescence ; 37(9): 1436-1445, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35723681

RESUMO

Large-scale surveys represented by 5800 bathymetric casts in the western Indian Ocean (0-22o N, 54-58o E), elucidated the 10-fold variation of the bioluminescent potential (BP) in the upper mixed layer, during the winter (north-east) monsoon season. The mesoscale survey in February 2017 consisted of 26 drift stations (4o N-3o S, 65-68o E) on which 5-10 bathymetric casts were deployed down to 60 m. The maximal BP was associated with the periphery of a cyclonic eddy. The two-fold to three-fold variation of BP characterized the spatial heterogeneity modulated by a detected eddy. High-frequency casts on drift stations resembled the fine-scale heterogeneity in which the three-fold variation was observed within the BP maximum at a 37 ± 13 m depth. The latter one was located above the deep chlorophyll maximum at a 80 m depth. A general decline of the BP variance from the large scale through mesoscale to fine scale, fits that of the zooplankton biomass.


Assuntos
Água do Mar , Biomassa , Oceano Índico
6.
Biofouling ; 37(8): 911-921, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34620016

RESUMO

The molecular mechanism underlying modulation of metamorphosis of the bivalve Mytilus coruscus by bacteria remains unclear. Here, the functional role of the thioesterase gene tesA of the bacterium Pseudoalteromonas marina in larval metamorphosis was examined. The aim was to determine whether inactivation of the tesA gene altered the biofilm-inducing capacity, bacterial cell motility, biopolymers, or the intracellular c-di-GMP levels. Complete inactivation of tesA increased the c-di-GMP content in P. marina, accompanied by a reduced fatty acid content, weaker motility, upregulation of bacterial aggregation, and biofilm formation. The metamorphosis rate of mussel larvae on ΔtesA biofilms was reduced by ∼ 80% compared with those settling on wild-type P. marina. Exogenous addition of a mixture of extracted fatty acids from P. marina into the ΔtesA biofilms promoted the biofilm-inducing capacity. This study suggests that the bacterial thioesterase gene tesA altered the fatty acid composition of ΔtesA P. marina biofilms (BF) through regulation of its c-di-GMP, subsequently impacting mussel metamorphosis.


Assuntos
Mytilus , Pseudoalteromonas , Animais , Proteínas de Bactérias/genética , Biofilmes , GMP Cíclico , Ácidos Graxos , Regulação Bacteriana da Expressão Gênica , Metamorfose Biológica , Mytilus/metabolismo , Pseudoalteromonas/metabolismo
7.
Int J Mol Sci ; 22(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925962

RESUMO

Functional nanocomposites with biopolymers and zinc oxide (ZnO) nanoparticles is an emerging application of photocatalysis in antifouling coatings. The reduced chemical stability of ZnO in the acidic media in which chitosan is soluble affects the performance of chitosan nanocomposites in antifouling applications. In this study, a thin shell of amorphous tin dioxide (SnOx) was grown on the surface of ZnO to form ZnO-SnOx core-shell nanoparticles that improved the chemical stability of the photocatalyst nanoparticles, as examined at pH 3 and 6. The photocatalytic activity of ZnO-SnOx in the degradation of methylene blue (MB) dye under visible light showed a higher efficiency than that of ZnO nanoparticles due to the passivation of electronic defects. Chitosan-based antifouling coatings with varying percentages of ZnO or ZnO-SnOx nanoparticles, with or without the glutaraldehyde (GA) crosslinking of chitosan, were developed and studied. The incorporation of photocatalysts into the chitosan matrix enhanced the thermal stability of the coatings. Through a mesocosm study using running natural seawater, it was found that chitosan/ZnO-SnOx/GA coatings enabled better inhibition of bacterial growth compared to chitosan coatings alone. This study demonstrates the antifouling potential of chitosan nanocomposite coatings containing core-shell nanoparticles as an effective solution for the prevention of biofouling.


Assuntos
Quitosana/química , Nanocompostos/química , Óxido de Zinco/química , Antibacterianos/farmacologia , Incrustação Biológica/prevenção & controle , Biopolímeros , Microscopia Eletrônica de Varredura/métodos , Nanopartículas/química , Oxidantes Fotoquímicos/química , Compostos de Estanho/química
8.
Molecules ; 26(12)2021 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-34199287

RESUMO

High-grade epithelial ovarian cancer is a fatal disease in women frequently associated with drug resistance and poor outcomes. We previously demonstrated that a marine-derived compound MalforminA1 (MA1) was cytotoxic for the breast cancer cell line MCF-7. In this study, we aimed to examine the effect of MA1 on human ovarian cancer cells. The potential cytotoxicity of MA1was tested on cisplatin-sensitive (A2780S) and cisplatin-resistant (A2780CP) ovarian cancer cell lines using AlamarBlue assay, Hoechst dye, flow cytometry, Western blot, and RT-qPCR. MA1 had higher cytotoxic activity on A2780S (IC50 = 0.23 µM) and A2780CP (IC50 = 0.34 µM) cell lines when compared to cisplatin (IC50 = 31.4 µM and 76.9 µM, respectively). Flow cytometry analysis confirmed the cytotoxic effect of MA1. The synergistic effect of the two drugs was obvious, since only 13% of A2780S and 7% of A2780CP cells remained alive after 24 h of treatment with both MA1 and cisplatin. Moreover, we examined the expression of bcl2, p53, caspase3/9 genes at RNA and protein levels using RT-qPCR and Western blot, respectively, to figure out the cell death mechanism induced by MA1. A significant down-regulation in bcl2 and p53 genes was observed in treated cells compared to non-treated cells (p < 0.05), suggesting that MA1 may not follow the canonical pathway to induce apoptosis in ovarian cancer cell lines. MalforminA1 showed promising anticancer activity by inducing cytotoxicity in cisplatin-sensitive and cisplatin-resistant cancer cell lines. Interestingly, a synergistic effect was observed when MA1 was combined with cisplatin, leading to it overcoming its resistance to cisplatin.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Cisplatino/farmacologia , Neoplasias Ovarianas/tratamento farmacológico , Peptídeos Cíclicos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cisplatino/administração & dosagem , Resistencia a Medicamentos Antineoplásicos , Sinergismo Farmacológico , Feminino , Humanos , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Peptídeos Cíclicos/administração & dosagem
9.
Int J Mol Sci ; 21(3)2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-31979128

RESUMO

Marine biofilms are composed of many species of bacteria, unicellular algae, and protozoa. Biofilms can induce, inhibit, or have no effect on settlement of larvae and spores of algae. In this review, we focus on induction of larval settlement by marine bacteria and unicellular eukaryotes and review publications from 2010 to September 2019. This review provides insights from meta-analysis on what is known about the effect of marine biofilms on larval settlement. Of great interest is the impact of different components of marine biofilms, such as bacteria and diatoms, extracellular polymeric substances, quorum sensing signals, unique inductive compounds, exoenzymes, and structural protein degradation products on larval settlement and metamorphosis. Molecular aspects of larval settlement and impact of climate change are reviewed and, finally, potential areas of future investigations are provided.


Assuntos
Organismos Aquáticos/crescimento & desenvolvimento , Biofilmes/crescimento & desenvolvimento , Larva/crescimento & desenvolvimento , Animais , Bactérias/crescimento & desenvolvimento , Diatomáceas/crescimento & desenvolvimento , Humanos , Metamorfose Biológica/fisiologia
10.
Int J Mol Sci ; 21(6)2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32188145

RESUMO

Microbial biofilms can be key mediators for settlement of macrofoulers. The present study examines the coupled effects of microbial biofilms and local environmental conditions on the composition, structure and functioning of macrofouling assemblages. Settlement of invertebrates over a gradient of human-impacted sites was investigated on local biofilms and on biofilms developed in marine protected areas (MPAs). Special attention was given to the presence of non-indigenous species (NIS), a global problem that can cause important impacts on local assemblages. In general, the formation of macrofouling assemblages was influenced by the identity of the biofilm. However, these relationships varied across levels of anthropogenic pressure, possibly influenced by environmental conditions and the propagule pressure locally available. While the NIS Watersipora subatra seemed to be inhibited by the biofilm developed in the MPA, Diplosoma cf. listerianum seemed to be attracted by biofilm developed in the MPA only under mid anthropogenic pressure. The obtained information is critical for marine environmental management, urgently needed for the establishment of prevention and control mechanisms to minimize the settlement of NIS and mitigate their threats.


Assuntos
Bactérias/metabolismo , Biofilmes , Incrustação Biológica , Invertebrados/fisiologia , Aizoaceae/microbiologia , Animais , Biofilmes/crescimento & desenvolvimento , Briozoários/microbiologia , Diatomáceas/microbiologia , Diatomáceas/fisiologia , Biologia Marinha , Pressão , Água do Mar/microbiologia , Espanha
11.
Biofouling ; 35(5): 585-595, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-31282218

RESUMO

Climate change (CC) is driving modification of the chemical and physical properties of estuaries and oceans with profound consequences for species and ecosystems. Numerous studies investigate CC effects from species to ecosystem levels, but little is known of the impacts on biofilm communities and on bioactive molecules such as cues, adhesives and enzymes. CC is induced by anthropogenic activity increasing greenhouse emissions leading to rises in air and water temperatures, ocean acidification, sea level rise and changes in ocean gyres and rainfall patterns. These environmental changes are resulting in alterations within marine communities and changes in species ranges and composition. This review provides insights and synthesis of knowledge about the effect of elevated temperature and ocean acidification on microfouling communities and bioactive molecules. The existing studies suggest that CC will impact production of bioactive compounds as well as the growth and composition of biofouling communities. Undoubtedly, with CC fouling management will became an even greater challenge.


Assuntos
Incrustação Biológica , Animais , Mudança Climática , Ecossistema , Concentração de Íons de Hidrogênio , Oceanos e Mares , Água do Mar/química
12.
J Therm Biol ; 85: 102403, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31657744

RESUMO

While the impact of ocean warming on single species is well described, the impact on marine biofouling communities is not well understood. Effluents of power plants have higher temperatures and can be used as natural large-scale test sites to investigate warming effects on marine ecosystems. In the present study, we evaluated the impact of elevated temperatures in the vicinity of a power plant on macro-biofouling communities in the northern coast of the Persian Gulf. The impact site was on average 2 °C warmer than the control site. Our results demonstrate a significantly different structure and composition of biofouling communities between control and impact sites. Warming led to a 1.5-fold increase in the mean coverage of biofouling communities and slightly decreased functional and species richness. Our results indicated that future warming will likely increase biofouling pressure, while decreasing diversity of communities, particularly in habitats where organisms exist at their upper tolerance limits of temperature.


Assuntos
Incrustação Biológica , Aquecimento Global , Animais , Biodiversidade , Clorófitas , Oceano Índico , Invertebrados , Centrais Elétricas , Água do Mar , Temperatura
13.
Biofouling ; 34(9): 1064-1077, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-30621450

RESUMO

For the first time, the densities and diversity of microorganisms developed on ocean gliders were investigated using flow cytometry and Illumina MiSeq sequencing of 16S and 18S rRNA genes. Ocean gliders are autonomous buoyancy-driven underwater vehicles, equipped with sensors continuously recording physical, chemical, and biological parameters. Microbial biofilms were investigated on unprotected parts of the glider and surfaces coated with base, biocidal and chitosan paints. Biofilms on the glider were exposed to periodical oscillations of salinity, oxygen, temperature, pressure, depth and light, due to periodic ascending and descending of the vehicle. Among the unprotected surfaces, the highest microbial abundance was observed on the bottom of the glider's body, while the lowest density was recorded on the glider's nose. Antifouling paints had the lowest densities of microorganisms. Multidimensional analysis showed that the microbial communities formed on unprotected parts of the glider were significantly different from those on biocidal paint and in seawater.


Assuntos
Biofilmes/crescimento & desenvolvimento , Incrustação Biológica/prevenção & controle , Quitosana , Monitoramento Ambiental/métodos , Pintura , Água do Mar/microbiologia , Quitosana/química , Desinfetantes , Monitoramento Ambiental/instrumentação , Oceano Índico , Salinidade
14.
Mar Drugs ; 15(9)2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28846625

RESUMO

Marine macroalgae produce a wide variety of biologically-active metabolites that have been developed into commercial products, such as antibiotics, immunosuppressive, anti-inflammatory, cytotoxic agents, and cosmetic products. Many marine algae remain clean over longer periods of time, suggesting their strong antifouling potential. Isolation of biogenic compounds and the determination of their structure could provide leads for the development of environmentally-friendly antifouling paints. Isolated substances with potent antifouling activity belong to fatty acids, lipopeptides, amides, alkaloids, lactones, steroids, terpenoids, and pyrroles. It is unclear as yet to what extent symbiotic microorganisms are involved in the synthesis of these compounds. Algal secondary metabolites have the potential to be produced commercially using genetic and metabolic engineering techniques. This review provides an overview of publications from 2010 to February 2017 about antifouling activity of green, brown, and red algae. Some researchers were focusing on antifouling compounds of brown macroalgae, while metabolites of green algae received less attention. Several studies tested antifouling activity against bacteria, microalgae and invertebrates, but in only a few studies was the quorum sensing inhibitory activity of marine macroalgae tested. Rarely, antifouling compounds from macroalgae were isolated and tested in an ecologically-relevant way.


Assuntos
Alga Marinha/química , Alcaloides/metabolismo , Antibacterianos/farmacologia , Bactérias/metabolismo , Incrustação Biológica/prevenção & controle , Produtos Biológicos , Biologia Marinha , Rodófitas/metabolismo
15.
Biofouling ; 32(4): 383-95, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26930216

RESUMO

The antifouling (AF) properties of zinc oxide (ZnO) nanorod coated glass substrata were investigated in an out-door mesocosm experiment under natural sunlight (14:10 light: dark photoperiod) over a period of five days. The total bacterial density (a six-fold reduction) and viability (a three-fold reduction) was significantly reduced by nanocoatings in the presence of sunlight. In the absence of sunlight, coated and control substrata were colonized equally by bacteria. MiSeq Illumina sequencing of 16S rRNA genes revealed distinct bacterial communities on the nanocoated and control substrata in the presence and absence of light. Diatom communities also varied on nanocoated substrata in the presence and the absence of light. The observed AF activity of the ZnO nanocoatings is attributed to the formation of reactive oxygen species (ROS) through photocatalysis in the presence of sunlight. These nanocoatings are a significant step towards the production of an environmentally friendly AF coating that utilizes a sustainable supply of sunlight.


Assuntos
Incrustação Biológica/prevenção & controle , Descontaminação , Nanotubos , Óxido de Zinco/farmacologia , Anti-Infecciosos Locais/farmacologia , Organismos Aquáticos/efeitos dos fármacos , Organismos Aquáticos/fisiologia , Fenômenos Fisiológicos Bacterianos/efeitos dos fármacos , Materiais Revestidos Biocompatíveis/farmacologia , Diatomáceas/efeitos dos fármacos , Diatomáceas/fisiologia , Processos Fotoquímicos/efeitos dos fármacos , Luz Solar , Protetores Solares/farmacologia
16.
Biofouling ; 32(7): 763-77, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27348759

RESUMO

This study investigated the effect of carbon nanotubes (CNTs) and titanium dioxide (TiO2) incorporated in PDMS on biofilm formation and plantigrade settlement of Mytilus coruscus. TiO2 increased bacterial density, and CNTs also increased bacterial density but reduced diatom density in biofilms after 28 days. Further analysis was conducted between bacterial communities on glass, PDMS, CNTs (0.5 wt%) and TiO2 (7.5 wt%). ANOSIM analysis revealed significant differences (R > 0.9) between seven, 14, 21 and 28 day-old bacterial communities. MiSeq sequencing showed that CNTs and TiO2 impacted the composition of 28 day-old bacterial communities by increasing the abundance of Proteobacteria and decreasing the abundance of Bacteroidetes. The maximum decreased settlement rate in 28 day-old biofilms on CNTs and TiO2 was > 50% in comparison to those on glass and PDMS. Thus, CNTs and TiO2 incorporated in PDMS altered the biomass and community composition of biofilms, and subsequently decreased mussel settlement.


Assuntos
Biofilmes/crescimento & desenvolvimento , Diatomáceas/fisiologia , Dimetilpolisiloxanos/química , Mytilus/fisiologia , Nanotubos de Carbono/química , Proteobactérias/fisiologia , Titânio/química , Animais , Propriedades de Superfície
17.
Biofouling ; 30(7): 871-82, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115521

RESUMO

In laboratory experiments, the antifouling (AF) properties of zinc oxide (ZnO) nanorod coatings were investigated using the marine bacterium Acinetobacter sp. AZ4C, larvae of the bryozoan Bugula neritina and the microalga Tetraselmis sp. ZnO nanorod coatings were fabricated on microscope glass substrata by a simple hydrothermal technique using two different molar concentrations (5 and 10 mM) of zinc precursors. These coatings were tested for 5 h under artificial sunlight (1060 W m(-2) or 530 W m(-2)) and in the dark (no irradiation). In the presence of light, both the ZnO nanorod coatings significantly reduced the density of Acinetobacter sp. AZ4C and Tetraselmis sp. in comparison to the control (microscope glass substratum without a ZnO coating). High mortality and low settlement of B. neritina larvae was observed on ZnO nanorod coatings subjected to light irradiation. In darkness, neither mortality nor enhanced settlement of larvae was observed. Larvae of B. neritina were not affected by Zn(2+) ions. The AF effect of the ZnO nanorod coatings was thus attributed to the reactive oxygen species (ROS) produced by photocatalysis. It was concluded that ZnO nanorod coatings effectively prevented marine micro and macrofouling in static conditions.


Assuntos
Acinetobacter/fisiologia , Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Briozoários/fisiologia , Clorófitas/fisiologia , Nanotubos/química , Óxido de Zinco/farmacologia , Acinetobacter/efeitos dos fármacos , Animais , Antibacterianos/farmacologia , Briozoários/efeitos dos fármacos , Briozoários/genética , Clorófitas/efeitos dos fármacos , Larva/efeitos dos fármacos , Larva/fisiologia , Microalgas/efeitos dos fármacos , Microalgas/fisiologia
18.
Biofouling ; 30(10): 1155-64, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25390938

RESUMO

The current study investigated the microbial community composition of the biofilms that developed on 11 commercial biocidal coatings, including examples of the three main historic types, namely self-polishing copolymer (SPC), self-polishing hybrid (SPH) and controlled depletion polymer (CDP), after immersion in the sea for one year. The total wet weight of the biofilm and the total bacterial density were significantly influenced by all coatings. Pyrosequencing of 16S rRNA genes revealed distinct bacterial community structures on the different types of coatings. Flavobacteria accounted for the dissimilarity between communities developed on the control and SPC (16%) and the control and SPH coatings (17%), while Alphaproteobacteria contributed to 14% of the dissimilarity between the control and CDP coatings. The lowest number of operational taxonomic units was found on Intersmooth 100, while the lowest biomass and density of bacteria was detected on other SPC coatings. The experiments demonstrated that the nature and quantity of biofilm present differed from coating to coating with clear differences between copper-free and copper-based biocidal coatings.


Assuntos
Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Incrustação Biológica/prevenção & controle , Desinfetantes/farmacologia , Bactérias/classificação , Cobre/farmacologia , Diatomáceas/classificação , Diatomáceas/efeitos dos fármacos , Sequenciamento de Nucleotídeos em Larga Escala , RNA Ribossômico 16S/genética , Água do Mar , Navios
19.
Microorganisms ; 12(8)2024 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-39203403

RESUMO

Microbial composition across substrates in mangroves, particularly in the Middle East, remains unclear. This study characterized bacterial communities in sediment, water, Terebralia palustris snail guts, and plastic associated with Avicennia marina mangrove forests in two coastal lagoons in the Sea of Oman using 16S rDNA gene MiSeq sequencing. The genus Vibrio dominated all substrates except water. In the gut of snails, Vibrio is composed of 80-99% of all bacterial genera. The water samples showed a different pattern, with the genus Sunxiuqinia being dominant in both Sawadi (50.80%) and Qurum (49.29%) lagoons. There were significant differences in bacterial communities on different substrata, in particular plastic. Snail guts harbored the highest number of unique Operational Taxonomic Units (OTUs) in both lagoons, accounting for 30.97% OTUs in Sawadi and 28.91% OTUs in Qurum, compared to other substrates. Plastic in the polluted Sawadi lagoon with low salinity harbored distinct genera such as Vibrio, Aestuariibacter, Zunongwangia, and Jeotgalibacillus, which were absent in the Qurum lagoon with higher salinity and lower pollution. Sawadi lagoon exhibited higher species diversity in sediment and plastic substrates, while Qurum lagoon demonstrated lower species diversity. The principal component analysis (PCA) indicates that environmental factors such as salinity, pH, and nutrient levels significantly influence bacterial community composition across substrates. Variations in organic matter and potential anthropogenic influences, particularly from plastics, further shape bacterial communities. This study highlights the complex microbial communities in mangrove ecosystems, emphasizing the importance of considering multiple substrates in mangrove microbial ecology studies. The understanding of microbial dynamics and anthropogenic impacts is crucial for shaping effective conservation and management strategies in mangrove ecosystems, particularly in the face of environmental changes.

20.
Mar Pollut Bull ; 201: 116132, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38394792

RESUMO

Marine litter and microplastic pollution in mangroves pose significant threats. This study of litter in Omani mangroves revealed an average density of 0.83 to 21.92 items/m2. Quriyat lagoon emerged as the most contaminated area, hosting 133 items/m2, while Qurum Natural Reserve lagoon showed the least contamination at 10 items/m2. Plastics constituted 73-96 % of the litter, with microplastic levels in sediment ranging from 6 to 256 pieces/kg. Al-Sawadi's lagoon had the highest microplastic abundance (27.52 ± 5.32 pieces/kg), in contrast to Al Qurum's Marine Protected Area with the lowest (0.60 ± 1.12 pieces/kg). Microplastics, categorized as fragments, pellets, and fibers, were distributed across zones 40.05 % landward, 30.97 % seaward, and 28.98 % in the middle mangrove zones. Primary plastic polymers identified were Polyethylene (PE) at 40 % and High-Density Polyethylene (HDPE) at 28 %, along with others found in specific areas. Our findings provide essential baseline data for future monitoring efforts and management strategies in Oman and other countries.


Assuntos
Microplásticos , Poluentes Químicos da Água , Plásticos , Omã , Monitoramento Ambiental , Poluentes Químicos da Água/análise , Polietileno/análise , Sedimentos Geológicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA