Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(13)2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37447506

RESUMO

This study focused on a potential application of electrically conductive, biocompatible, bioresorbable fibers for tubular conduits aimed at the regeneration of peripheral nerves. The conducting, mechanical, and biological properties of composite fibers based on chitosan and single-walled carbon nanotubes were investigated in this paper. It was shown that introducing 0.5 wt.% of SWCNT into the composite fibers facilitated the formation of a denser fiber structure, resulting in improved strength (σ = 260 MPa) and elastic (E = 14 GPa) characteristics. Additionally, the composite fibers were found to be biocompatible and did not cause significant inflammation or deformation during in vivo studies. A thin layer of connective tissue formed around the fiber.

2.
Polymers (Basel) ; 15(15)2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37571217

RESUMO

New tubular conduits have been developed for the regeneration of peripheral nerves and the repair of defects that are larger than 3 cm. The conduits consist of a combination of poly(L-lactide) nanofibers and chitosan composite fibers with chitin nanofibrils. In vitro studies were conducted to assess the biocompatibility of the conduits using human embryonic bone marrow stromal cells (FetMSCs). The studies revealed good adhesion and differentiation of the cells on the conduits just one day after cultivation. Furthermore, an in vivo study was carried out to evaluate motor-coordination disorders using the sciatic nerve functional index (SFI) assessment. The presence of chitosan monofibers and chitosan composite fibers with chitin nanofibrils in the conduit design increased the regeneration rate of the sciatic nerve, with an SFI value ranging from 76 to 83. The degree of recovery of nerve conduction was measured by the amplitude of M-response, which showed a 46% improvement. The conduit design imitates the oriented architecture of the nerve, facilitates electrical communication between the damaged nerve's ends, and promotes the direction of nerve growth, thereby increasing the regeneration rate.

3.
J Funct Biomater ; 13(4)2022 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-36278667

RESUMO

Chitosan and composite fibers containing chitin nanofibrils have been developed for use in cosmetology. The tensile strength of the chitosan multifilaments is 160.6 ± 19.0 MPa, and of the composite multifilaments containing chitin, nanofibrils are 198.0 ± 18.4 MPa. Chitin nanofibrils introduced into the chitosan solution contribute to the creation of a new spatial arrangement of chitosan chains and their denser packing. The studies carried out by optical, scanning electron, and atomic force microscopy has shown that the serum, consisting of a mixture of lactic acid and sodium lactate, contains extended oriented structures-"liquid filaments". It has been also shown that a mixture of serum and composite fibers based on chitosan and chitin nanofibrils has mucoadhesive, film-forming properties. The introduction of composite fibers containing chitin nanofibrils into the serum promotes the reinforcing effect of liquid filaments, the lifting effect of the film. The obtained composition can be used in cosmetology as a skin care product.

4.
Nanomaterials (Basel) ; 10(5)2020 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-32429114

RESUMO

Hemorrhage occurring during and after surgery still remains one of the biggest problems in medicine. Although a large number of hemostatic products have been created, there is no universal preparation; thus, the development of new materials is an urgent task. The aim of this research is to increase hemostatic properties of chitosan by introducing chitin nanofibrils (ChNF). The blood absorbance by ChNF-containing chitosan sponges and time-until-arrest of bleeding were studied. Non-woven materials containing 0.5% of ChNF and materials without chitin were obtained. The studies of ζ-potential showed that the material containing 0.5% ChNF had relatively a high positive charge, but efficiencies of both materials for hemorrhage arrest were comparable to those of commercial hemostatic products (Surgicel and TachoComb). To investigate the interaction between the materials and living organism, histological studies and optical microscopy studies were conducted after implantation of fibers. Despite bioinertness of fibers, implantation of non-woven materials led to formation of significant granulomas.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA