Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 25(12): 2698-2718, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37515381

RESUMO

Plastic pollution is an increasing worldwide problem urgently requiring a solution. While recycling rates are increasing globally, only 9% of all plastic waste has been recycled, and with the cost and limited downstream uses of recycled plastic, an alternative is needed. Here, we found that expanded polystyrene (EPS) promoted high levels of bacterial biofilm formation and sought out environmental EPS waste to characterize these native communities. We demonstrated that the EPS attached communities had limited plastic degrading activity. We then performed a long-term enrichment experiment where we placed a robust selection pressure on these communities by limiting carbon availability such that the waste plastic was the only carbon source. Seven of the resulting enriched bacterial communities had increased plastic degrading activity compared to the starting bacterial communities. Pseudomonas stutzeri was predominantly identified in six of the seven enriched communities as the strongest polyester degrader. Sequencing of one isolate of P. stutzeri revealed two putative polyesterases and one putative MHETase. This indicates that waste plastic-associated biofilms are a source for bacteria that have plastic-degrading potential, and that this potential can be unlocked through selective pressure and further in vitro enrichment experiments, resulting in biodegradative communities that are better than nature.


Assuntos
Bactérias , Poliésteres , Bactérias/genética , Poliestirenos , Biofilmes , Carbono
2.
Appl Microbiol Biotechnol ; 104(19): 8131-8154, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32827049

RESUMO

Within the marine sphere, host-associated microbiomes are receiving growing attention as prolific sources of novel biocatalysts. Given the known biocatalytic potential of poriferan microbial inhabitants, this review focuses on enzymes from the sponge microbiome, with special attention on their relevant properties and the wide range of their potential biotechnological applications within various industries. Cultivable bacterial and filamentous fungal isolates account for the majority of the enzymatic sources. Hydrolases, mainly glycoside hydrolases and carboxylesterases, are the predominant reported group of enzymes, with varying degrees of tolerance to alkaline pH and growing salt concentrations being common. Prospective areas for the application of these microbial enzymes include biorefinery, detergent, food and effluent treatment industries. Finally, alternative strategies to identify novel biocatalysts from the sponge microbiome are addressed, with an emphasis on modern -omics-based approaches that are currently available in the enzyme research arena. By providing this current overview of the field, we hope to not only increase the appetite of researchers to instigate forthcoming studies but also to stress how basic and applied research can pave the way for new biocatalysts from these symbiotic microbial communities in a productive fashion. KEY POINTS: • The sponge microbiome is a burgeoning source of industrial biocatalysts. • Sponge microbial enzymes have useful habitat-related traits for several industries. • Strategies are provided for the future discovery of microbial enzymes from sponges.


Assuntos
Microbiota , Bactérias/genética , Biotecnologia , Fungos , Estudos Prospectivos
3.
Mar Drugs ; 18(5)2020 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-32429425

RESUMO

This study examined the effects of dietary supplementation with laminarin or chitosan on colonic health in pigs challenged with dextran sodium sulphate (DSS). Weaned pigs were assigned to: (1) a basal diet (n = 22); (2) a basal diet + laminarin (n = 10); and (3) a basal diet + chitosan (n = 10). On d35, the basal group was split, creating four groups: (1) the basal diet (control); (2) the basal diet + DSS; (3) the basal diet + laminarin + DSS; and (4) the basal diet + chitosan + DSS. From d39-42, the pigs were orally challenged with DSS. On d44, colonic tissue/digesta samples were collected. The basal DSS group had reduced growth, higher pathology score and an increased expression of MMP1, IL13 and IL23 compared with the controls (p < 0.05); these parameters were similar between the DSS-challenged groups (p > 0.05). In the basal DSS group, the relative abundance of beneficial taxa including Prevotella and Roseburia were reduced while Escherichia/Shigella were increased, compared with the controls (p < 0.05). The relative abundance of Escherichia/Shigella was reduced and the molar proportions of acetate were increased in the laminarin DSS group compared with the basal DSS group (p < 0.01), suggesting that laminarin has potential to prevent pathogen proliferation and enhance the volatile fatty acid profile in the colon in a porcine model of colitis.


Assuntos
Quitosana/farmacologia , Colite/prevenção & controle , Suplementos Nutricionais , Glucanos/farmacologia , Mucosa Intestinal/efeitos dos fármacos , Polissacarídeos/farmacologia , Substâncias Protetoras/farmacologia , Animais , Quitosana/administração & dosagem , Colite/induzido quimicamente , Dextranos , Modelos Animais de Doenças , Glucanos/administração & dosagem , Masculino , Polissacarídeos/administração & dosagem , Substâncias Protetoras/administração & dosagem , Distribuição Aleatória , Suínos
4.
Mar Drugs ; 17(8)2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31387272

RESUMO

Enzymes are essential components of biological reactions and play important roles in the scaling and optimization of many industrial processes. Due to the growing commercial demand for new and more efficient enzymes to help further optimize these processes, many studies are now focusing their attention on more renewable and environmentally sustainable sources for the production of these enzymes. Microalgae are very promising from this perspective since they can be cultivated in photobioreactors, allowing the production of high biomass levels in a cost-efficient manner. This is reflected in the increased number of publications in this area, especially in the use of microalgae as a source of novel enzymes. In particular, various microalgal enzymes with different industrial applications (e.g., lipids and biofuel production, healthcare, and bioremediation) have been studied to date, and the modification of enzymatic sequences involved in lipid and carotenoid production has resulted in promising results. However, the entire biosynthetic pathways/systems leading to synthesis of potentially important bioactive compounds have in many cases yet to be fully characterized (e.g., for the synthesis of polyketides). Nonetheless, with recent advances in microalgal genomics and transcriptomic approaches, it is becoming easier to identify sequences encoding targeted enzymes, increasing the likelihood of the identification, heterologous expression, and characterization of these enzymes of interest. This review provides an overview of the state of the art in marine and freshwater microalgal enzymes with potential biotechnological applications and provides future perspectives for this field.


Assuntos
Biotecnologia/métodos , Microalgas/enzimologia , Biodegradação Ambiental , Biocombustíveis , Vias Biossintéticas , Biotecnologia/tendências , Carotenoides/metabolismo , Lipídeos/biossíntese
5.
Mar Drugs ; 17(4)2019 Mar 29.
Artigo em Inglês | MEDLINE | ID: mdl-30934874

RESUMO

Seaweeds are of significant interest in the food, pharmaceutical, and agricultural industries as they contain several commercially relevant bioactive compounds. Current extraction methods for macroalgal-derived metabolites are, however, problematic due to the complexity of the algal cell wall which hinders extraction efficiencies. The use of advanced extraction methods, such as enzyme-assisted extraction (EAE), which involve the application of commercial algal cell wall degrading enzymes to hydrolyze the cell wall carbohydrate network, are becoming more popular. Ascophyllum nodosum samples were collected from the Irish coast and incubated in artificial seawater for six weeks at three different temperatures (18 °C, 25 °C, and 30 °C) to induce decay. Microbial communities associated with the intact and decaying macroalga were examined using Illumina sequencing and culture-dependent approaches, including the novel ichip device. The bacterial populations associated with the seaweed were observed to change markedly upon decay. Over 800 bacterial isolates cultured from the macroalga were screened for the production of algal cell wall polysaccharidases and a range of species which displayed multiple hydrolytic enzyme activities were identified. Extracts from these enzyme-active bacterial isolates were then used in EAE of phenolics from Fucus vesiculosus and were shown to be more efficient than commercial enzyme preparations in their extraction efficiencies.


Assuntos
Ascophyllum/microbiologia , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Fracionamento Químico/métodos , Polissacarídeo-Liases/biossíntese , Polissacarídeo-Liases/química , Bactérias/enzimologia , Bactérias/isolamento & purificação , Proteínas de Bactérias/biossíntese , Proteínas de Bactérias/química , Proteínas de Bactérias/isolamento & purificação , Fucus/química , Hidrólise , Microbiota , Fenóis/isolamento & purificação , Polissacarídeo-Liases/isolamento & purificação , Proteólise , Alga Marinha/microbiologia
6.
Rapid Commun Mass Spectrom ; 32(19): 1737-1745, 2018 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-29971859

RESUMO

RATIONALE: In recent years, metabolites produced by Pseudovibrio species have gained scientific attention due to their potent antimicrobial activity. Recently, we also have assessed the antibacterial activities of Pseudovibrio sp. W64 isolates against Staphylococcus aureus, where only the dominant tropodithietic acid (TDA) was identified. However, characterisation of other metabolites is necessary as these metabolites may also serve as potent antimicrobial agents. METHODS: Liquid chromatography/tandem mass spectrometry (LC/MS/MS), aided by accurate mass measurements, was employed to screen and characterise a range of metabolites produced by Pseudovibrio sp. W64 via assessment of ethyl acetate fractions generated from bacterial cultures. RESULTS: Thirteen metabolites unique to the bacterial culture were detected and their chemical structures were assigned by MS/MS and accurate mass measurements. Among the thirteen metabolites, a methyl ester of TDA, a number of cholic acid derivatives, and amino diols and triols were characterised. CONCLUSIONS: Pseudovibrio sp. W64 produces methylated TDA in addition to TDA, and metabolises lipids and amino acids in the cell-culture medium. To the best of our knowledge, this is the first report of methylated TDA, cholic acid and its various analogs, and sphinganine being detected in this Pseudovibrio strain. The data generated may help to better understand the biochemical processes and metabolism of bacterial strains towards discovery of antimicrobial agents from marine sources.


Assuntos
Cromatografia Líquida de Alta Pressão/métodos , Poríferos/microbiologia , Rhodobacteraceae/química , Rhodobacteraceae/metabolismo , Espectrometria de Massas por Ionização por Electrospray/métodos , Animais , Ácido Cólico/análise , Tropolona/análogos & derivados , Tropolona/análise
7.
Mar Drugs ; 16(7)2018 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-30041461

RESUMO

Genomic data often highlights an inconsistency between the number of gene clusters identified using bioinformatic approaches as potentially producing secondary metabolites and the actual number of chemically characterized secondary metabolites produced by any given microorganism. Such gene clusters are generally considered as "silent", meaning that they are not expressed under laboratory conditions. Triggering expression of these "silent" clusters could result in unlocking the chemical diversity they control, allowing the discovery of novel molecules of both medical and biotechnological interest. Therefore, both genetic and cultivation-based techniques have been developed aimed at stimulating expression of these "silent" genes. The principles behind the cultivation based approaches have been conceptualized in the "one strain many compounds" (OSMAC) framework, which underlines how a single strain can produce different molecules when grown under different environmental conditions. Parameters such as, nutrient content, temperature, and rate of aeration can be easily changed, altering the global physiology of a microbial strain and in turn significantly affecting its secondary metabolism. As a direct extension of such approaches, co-cultivation strategies and the addition of chemical elicitors have also been used as cues to activate "silent" clusters. In this review, we aim to provide a focused and comprehensive overview of these strategies as they pertain to marine microbes. Moreover, we underline how changes in some parameters which have provided important results in terrestrial microbes, but which have rarely been considered in marine microorganisms, may represent additional strategies to awaken "silent" gene clusters in marine microbes. Unfortunately, the empirical nature of the OSMAC approach forces scientists to perform extensive laboratory experiments. Nevertheless, we believe that some computation and experimental based techniques which are used in other disciplines, and which we discuss; could be effectively employed to help streamline the OSMAC based approaches. We believe that natural products discovery in marine microorganisms would be greatly aided through the integration of basic microbiological approaches, computational methods, and technological innovations, thereby helping unearth much of the as yet untapped potential of these microorganisms.


Assuntos
Organismos Aquáticos/genética , Genoma/genética , Animais , Produtos Biológicos/metabolismo , Humanos , Família Multigênica/genética , Metabolismo Secundário/genética
8.
Mar Drugs ; 16(2)2018 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-29461500

RESUMO

The genus Streptomyces produces secondary metabolic compounds that are rich in biological activity. Many of these compounds are genetically encoded by large secondary metabolism biosynthetic gene clusters (smBGCs) such as polyketide synthases (PKS) and non-ribosomal peptide synthetases (NRPS) which are modular and can be highly repetitive. Due to the repeats, these gene clusters can be difficult to resolve using short read next generation datasets and are often quite poorly predicted using standard approaches. We have sequenced the genomes of 13 Streptomyces spp. strains isolated from shallow water and deep-sea sponges that display antimicrobial activities against a number of clinically relevant bacterial and yeast species. Draft genomes have been assembled and smBGCs have been identified using the antiSMASH (antibiotics and Secondary Metabolite Analysis Shell) web platform. We have compared the smBGCs amongst strains in the search for novel sequences conferring the potential to produce novel bioactive secondary metabolites. The strains in this study recruit to four distinct clades within the genus Streptomyces. The marine strains host abundant smBGCs which encode polyketides, NRPS, siderophores, bacteriocins and lantipeptides. The deep-sea strains appear to be enriched with gene clusters encoding NRPS. Marine adaptations are evident in the sponge-derived strains which are enriched for genes involved in the biosynthesis and transport of compatible solutes and for heat-shock proteins. Streptomyces spp. from marine environments are a promising source of novel bioactive secondary metabolites as the abundance and diversity of smBGCs show high degrees of novelty. Sponge derived Streptomyces spp. isolates appear to display genomic adaptations to marine living when compared to terrestrial strains.


Assuntos
Família Multigênica/genética , Poríferos/genética , Metabolismo Secundário/genética , Streptomyces/genética , Animais , Genes Bacterianos/genética , Peptídeo Sintases/genética , Filogenia , Policetídeo Sintases/genética
9.
Crit Rev Food Sci Nutr ; 57(1): 18-34, 2017 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-26528824

RESUMO

Spices and herbs have been used since ancient times as flavor and aroma enhancers, colorants, preservatives, and traditional medicines. There are more than 30 spices and herbs of global economic and culinary importance. Among the spices, black pepper, capsicums, cumin, cinnamon, nutmeg, ginger, turmeric, saffron, coriander, cloves, dill, mint, thyme, sesame seed, mustard seed, and curry powder are the most popular spices worldwide. In addition to their culinary uses, a number of functional properties of aromatic herbs and spices are also well described in the scientific literature. However, spices and herbs cultivated mainly in tropic and subtropic areas can be exposed to contamination with toxigenic fungi and subsequently mycotoxins. This review provides an overview on the mycotoxin risk in widely consumed spices and aromatic herbs.


Assuntos
Contaminação de Alimentos , Saúde Global , Micotoxinas/toxicidade , Especiarias/análise , Ração Animal/análise , Ração Animal/microbiologia , Ração Animal/toxicidade , Bem-Estar do Animal , Animais , Contaminação de Alimentos/prevenção & controle , Humanos , Legislação sobre Alimentos , Micotoxinas/análise , Componentes Aéreos da Planta/química , Componentes Aéreos da Planta/crescimento & desenvolvimento , Componentes Aéreos da Planta/microbiologia , Componentes Aéreos da Planta/toxicidade , Plantas Comestíveis/química , Plantas Comestíveis/crescimento & desenvolvimento , Plantas Comestíveis/microbiologia , Plantas Comestíveis/toxicidade , Plantas Medicinais/química , Plantas Medicinais/crescimento & desenvolvimento , Plantas Medicinais/microbiologia , Plantas Medicinais/toxicidade , Rizoma/química , Rizoma/crescimento & desenvolvimento , Rizoma/microbiologia , Rizoma/toxicidade , Sementes/química , Sementes/crescimento & desenvolvimento , Sementes/microbiologia , Sementes/toxicidade , Especiarias/efeitos adversos , Especiarias/normas
10.
Mar Drugs ; 15(9)2017 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-28846659

RESUMO

The marine environment is a rich source of chemically diverse, biologically active natural products, and serves as an invaluable resource in the ongoing search for novel antimicrobial compounds. Recent advances in extraction and isolation techniques, and in state-of-the-art technologies involved in organic synthesis and chemical structure elucidation, have accelerated the numbers of antimicrobial molecules originating from the ocean moving into clinical trials. The chemical diversity associated with these marine-derived molecules is immense, varying from simple linear peptides and fatty acids to complex alkaloids, terpenes and polyketides, etc. Such an array of structurally distinct molecules performs functionally diverse biological activities against many pathogenic bacteria and fungi, making marine-derived natural products valuable commodities, particularly in the current age of antimicrobial resistance. In this review, we have highlighted several marine-derived natural products (and their synthetic derivatives), which have gained recognition as effective antimicrobial agents over the past five years (2012-2017). These natural products have been categorized based on their chemical structures and the structure-activity mediated relationships of some of these bioactive molecules have been discussed. Finally, we have provided an insight into how genome mining efforts are likely to expedite the discovery of novel antimicrobial compounds.


Assuntos
Anti-Infecciosos/isolamento & purificação , Anti-Infecciosos/farmacologia , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Alcaloides/química , Alcaloides/isolamento & purificação , Alcaloides/farmacologia , Anti-Infecciosos/química , Produtos Biológicos/química , Humanos , Biologia Marinha , Estrutura Molecular , Policetídeos/química , Policetídeos/isolamento & purificação , Policetídeos/farmacologia , Terpenos/química , Terpenos/isolamento & purificação , Terpenos/farmacologia
11.
Mar Drugs ; 15(6)2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28629190

RESUMO

The marine genus Pseudoalteromonas is known for its versatile biotechnological potential with respect to the production of antimicrobials and enzymes of industrial interest. We have sequenced the genomes of three Pseudoalteromonas sp. strains isolated from different deep sea sponges on the Illumina MiSeq platform. The isolates have been screened for various industrially important enzymes and comparative genomics has been applied to investigate potential relationships between the isolates and their host organisms, while comparing them to free-living Pseudoalteromonas spp. from shallow and deep sea environments. The genomes of the sponge associated Pseudoalteromonas strains contained much lower levels of potential eukaryotic-like proteins which are known to be enriched in symbiotic sponge associated microorganisms, than might be expected for true sponge symbionts. While all the Pseudoalteromonas shared a large distinct subset of genes, nonetheless the number of unique and accessory genes is quite large and defines the pan-genome as open. Enzymatic screens indicate that a vast array of enzyme activities is expressed by the isolates, including ß-galactosidase, ß-glucosidase, and protease activities. A ß-glucosidase gene from one of the Pseudoalteromonas isolates, strain EB27 was heterologously expressed in Escherichia coli and, following biochemical characterization, the recombinant enzyme was found to be cold-adapted, thermolabile, halotolerant, and alkaline active.


Assuntos
Biotecnologia , Poríferos/microbiologia , Pseudoalteromonas/genética , Animais , Temperatura Baixa , Genoma Bacteriano , Pseudoalteromonas/enzimologia , Proteínas Recombinantes/biossíntese , beta-Galactosidase/genética , beta-Glucosidase/genética
12.
J Environ Manage ; 198(Pt 2): 1-11, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28499155

RESUMO

A number of fungal strains belonging to the ascomycota, basidiomycota and zygomycota genera were subjected to an in vitro screening regime to assess their ligninolytic activity potential, with a view to their potential use in mycoremediation-based strategies to remove phenolic compounds and polycyclic aromatic hydrocarbons (PAHs) from industrial wastewaters. All six basidiomycetes completely decolorized remazol brilliant blue R (RBBR), while also testing positive in both the guaiacol and gallic acid tests indicating good levels of lignolytic activity. All the fungi were capable of tolerating phenanthrene, benzo-α- pyrene, phenol and p-chlorophenol in agar medium at levels of 10 ppm. Six of the fungal strains, Pseudogymnoascus sp., Aspergillus caesiellus, Trametes hirsuta IBB 450, Phanerochate chrysosporium ATCC 787, Pleurotus ostreatus MTCC 1804 and Cadophora sp. produced both laccase and Mn peroxidase activity in the ranges of 200-560 U/L and 6-152 U/L, respectively, in liquid media under nitrogen limiting conditions. The levels of adsorption of the phenolic and PAHs were negligible with 99% biodegradation being observed in the case of benzo-α-pyrene, phenol and p-chlorophenol. The aforementioned six fungal strains were also found to be able to effectively treat highly alkaline industrial wastewater (pH 12.4). When this wastewater was supplemented with 0.1 mM glucose, all of the tested fungi, apart from A. caesiellus, displayed the capacity to remove both the phenolic and PAH compounds. Based on their biodegradative capacity we found T. hirsuta IBB 450 and Pseudogymnoascus sp., to have the greatest potential for further use in mycoremediation based strategies to treat wastestreams containing phenolics and PAHs.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos/metabolismo , Purificação da Água , Biodegradação Ambiental , Clorofenóis , Resíduos Industriais , Fenóis , Trametes
13.
Mar Drugs ; 14(3)2016 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-27007381

RESUMO

In recent years, the marine environment has been the subject of increasing attention from biotechnological and pharmaceutical industries as a valuable and promising source of novel bioactive compounds. Marine biodiscovery programmes have begun to reveal the extent of novel compounds encoded within the enormous bacterial richness and diversity of the marine ecosystem. A combination of unique physicochemical properties and spatial niche-specific substrates, in wide-ranging and extreme habitats, underscores the potential of the marine environment to deliver on functionally novel biocatalytic activities. With the growing need for green alternatives to industrial processes, and the unique transformations which nature is capable of performing, marine biocatalysts have the potential to markedly improve current industrial pipelines. Furthermore, biocatalysts are known to possess chiral selectivity and specificity, a key focus of pharmaceutical drug design. In this review, we discuss how the explosion in genomics based sequence analysis, allied with parallel developments in synthetic and molecular biology, have the potential to fast-track the discovery and subsequent improvement of a new generation of marine biocatalysts.


Assuntos
Desenho de Fármacos , Metagenômica/métodos , Biologia Sintética/métodos , Animais , Organismos Aquáticos/química , Biocatálise , Biodiversidade , Produtos Biológicos/isolamento & purificação , Produtos Biológicos/farmacologia , Biotecnologia/métodos , Descoberta de Drogas/métodos , Humanos , Biologia Molecular/métodos
14.
Int J Syst Evol Microbiol ; 65(7): 2097-2103, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25833155

RESUMO

Two Gram-stain-negative, rod-shaped, orange, catalase- and oxidase-positive, non-motile bacteria, designated W13M1A(T) and W15M10(T), were isolated from the marine sponges Suberites carnosus and Leucosolenia sp., respectively, which were sampled from Lough Hyne, Co. Cork, Ireland. Analysis of the 16S rRNA gene sequences of these isolates revealed that they are members of the genus Maribacter, in the family Flavobacteriaceae of the phylum Bacteroidetes. The type strain most closely related to strain W13M1A(T) is Maribacter forsetii DSM 18668(T) with a gene sequence similarity of 96.5%. The closest related type strain to strain W15M10(T) is Maribacter orientalis DSM 16471(T) with a gene sequence similarity of 98.3%. Phylogenetic inference and phenotypic data combined indicate that the isolates represent two novel species of the genus Maribacter, for which the names Maribacter spongiicola sp. nov. with type strain W15M10(T) ( = NCIMB 14725(T) = DSM 25233(T)) and Maribacter vaceletii sp. nov. with type strain W13M1A(T) ( = NCIMB 14724(T) = DSM 25230(T)), are proposed.


Assuntos
Flavobacteriaceae/classificação , Filogenia , Poríferos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Irlanda , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
15.
Mar Drugs ; 13(8): 4754-83, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26264003

RESUMO

Unlocking the rich harvest of marine microbial ecosystems has the potential to both safeguard the existence of our species for the future, while also presenting significant lifestyle benefits for commercial gain. However, while significant advances have been made in the field of marine biodiscovery, leading to the introduction of new classes of therapeutics for clinical medicine, cosmetics and industrial products, much of what this natural ecosystem has to offer is locked in, and essentially hidden from our screening methods. Releasing this silent potential represents a significant technological challenge, the key to which is a comprehensive understanding of what controls these systems. Heterologous expression systems have been successful in awakening a number of these cryptic marine biosynthetic gene clusters (BGCs). However, this approach is limited by the typically large size of the encoding sequences. More recently, focus has shifted to the regulatory proteins associated with each BGC, many of which are signal responsive raising the possibility of exogenous activation. Abundant among these are the LysR-type family of transcriptional regulators, which are known to control production of microbial aromatic systems. Although the environmental signals that activate these regulatory systems remain unknown, it offers the exciting possibility of evoking mimic molecules and synthetic expression systems to drive production of potentially novel natural products in microorganisms. Success in this field has the potential to provide a quantum leap forward in medical and industrial bio-product development. To achieve these new endpoints, it is clear that the integrated efforts of bioinformaticians and natural product chemists will be required as we strive to uncover new and potentially unique structures from silent or cryptic marine gene clusters.


Assuntos
Organismos Aquáticos/genética , Vias Biossintéticas/genética , Família Multigênica/genética , Produtos Biológicos/metabolismo , Ecossistema , Regulação da Expressão Gênica/genética , Humanos
16.
Mar Drugs ; 13(5): 2924-54, 2015 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-25984990

RESUMO

The vast oceans of the world, which comprise a huge variety of unique ecosystems, are emerging as a rich and relatively untapped source of novel bioactive compounds with invaluable biotechnological and pharmaceutical potential. Evidence accumulated over the last decade has revealed that the diversity of marine microorganisms is enormous with many thousands of bacterial species detected that were previously unknown. Associated with this diversity is the production of diverse repertoires of bioactive compounds ranging from peptides and enzymes to more complex secondary metabolites that have significant bioactivity and thus the potential to be exploited for innovative biotechnology. Here we review the discovery and functional potential of marine bioactive peptides such as lantibiotics, nanoantibiotics and peptidomimetics, which have received particular attention in recent years in light of their broad spectrum of bioactivity. The significance of marine peptides in cell-to-cell communication and how this may be exploited in the discovery of novel bioactivity is also explored. Finally, with the recent advances in bioinformatics and synthetic biology, it is becoming clear that the integration of these disciplines with genetic and biochemical characterization of the novel marine peptides, offers the most potential in the development of the next generation of societal solutions.


Assuntos
Organismos Aquáticos/química , Produtos Biológicos/química , Produtos Biológicos/farmacologia , Peptídeos/química , Peptídeos/farmacologia , Animais , Ecossistema , Humanos , Biologia Marinha/métodos , Biologia Sintética/métodos
17.
Nat Prod Rep ; 31(5): 612-6, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24671635

RESUMO

With the adoption of the Nagoya Protocol in 2010, an additional legal instrument under the Convention on Biological Diversity (1992), the legal landscape surrounding the access to and utilization of genetic resources will change. This is likely to impact working procedures for scientists, turning pre-existing ethics into legal obligations. The aim of this article is to inform scientists on the global access and benefit-sharing framework which has been set by the Convention on Biological Diversity and its Nagoya Protocol, focusing specifically on their application to marine genetic resources for which the United Nations Convention on the Law of the Sea (1982) also has relevance.


Assuntos
Biodiversidade , Produtos Biológicos , Biologia Marinha , Oceanos e Mares
18.
Int J Syst Evol Microbiol ; 64(Pt 2): 501-505, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24108324

RESUMO

A Gram-stain-negative, rod-shaped, orange-coloured, catalase- and oxidase-positive, non-motile bacterium, designated strain 92V(T), was isolated from the marine sponge Amphilectus fucorum, collected from Lough Hyne, County Cork, Ireland. 16S rRNA gene sequence analysis revealed that strain 92V(T) clustered with members of the family Flavobacteriaceae, the closest member being Aquimarina latercula NCIMB 1399(T), with a gene sequence similarity of 97.5%. Strain 92V(T) required seawater for growth with optimal growth occurring at 25 °C, at pH 6-7 and with 3% (w/v) NaCl. MK-6 was the sole respiratory quinone present and the major fatty acids were iso-C(17 : 0) 3-OH, iso-C(15 : 0), iso-C(17 : 1)ω9c and iso-C(15 : 0) 3-OH. The DNA G+C content was 36.1 mol%. Combined phenotypic differences and phylogenetic analysis indicate that strain 92V(T) represents a novel species of the genus Aquimarina, for which the name Aquimarina amphilecti sp. nov. is proposed. The type strain is 92V(T) ( = NCIMB 14723(T) = DSM 25232(T)).


Assuntos
Flavobacteriaceae/classificação , Filogenia , Poríferos/microbiologia , Animais , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Flavobacteriaceae/genética , Flavobacteriaceae/isolamento & purificação , Irlanda , Dados de Sequência Molecular , Pigmentação , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Vitamina K 2/análogos & derivados , Vitamina K 2/química
19.
Mar Drugs ; 12(6): 3516-59, 2014 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-24918453

RESUMO

Marine microorganisms continue to be a source of structurally and biologically novel compounds with potential use in the biotechnology industry. The unique physiochemical properties of the marine environment (such as pH, pressure, temperature, osmolarity) and uncommon functional groups (such as isonitrile, dichloroimine, isocyanate, and halogenated functional groups) are frequently found in marine metabolites. These facts have resulted in the production of bioactive substances with different properties than those found in terrestrial habitats. In fact, the marine environment contains a relatively untapped reservoir of bioactivity. Recent advances in genomics, metagenomics, proteomics, combinatorial biosynthesis, synthetic biology, screening methods, expression systems, bioinformatics, and the ever increasing availability of sequenced genomes provides us with more opportunities than ever in the discovery of novel bioactive compounds and biocatalysts. The combination of these advanced techniques with traditional techniques, together with the use of dereplication strategies to eliminate known compounds, provides a powerful tool in the discovery of novel marine bioactive compounds. This review outlines and discusses the emerging strategies for the biodiscovery of these bioactive compounds.


Assuntos
Produtos Biológicos/isolamento & purificação , Biotecnologia/métodos , Biologia Marinha/métodos , Animais , Biocatálise , Produtos Biológicos/farmacologia , Descoberta de Drogas/métodos , Humanos
20.
Mar Drugs ; 12(12): 5916-29, 2014 Dec 09.
Artigo em Inglês | MEDLINE | ID: mdl-25501794

RESUMO

Antibiotic resistance among pathogenic microorganisms is becoming ever more common. Unfortunately, the development of new antibiotics which may combat resistance has decreased. Recently, however the oceans and the marine animals that reside there have received increased attention as a potential source for natural product discovery. Many marine eukaryotes interact and form close associations with microorganisms that inhabit their surfaces, many of which can inhibit the attachment, growth or survival of competitor species. It is the bioactive compounds responsible for the inhibition that is of interest to researchers on the hunt for novel bioactives. The genus Pseudovibrio has been repeatedly identified from the bacterial communities isolated from marine surfaces. In addition, antimicrobial activity assays have demonstrated significant antimicrobial producing capabilities throughout the genus. This review will describe the potency, spectrum and possible novelty of the compounds produced by these bacteria, while highlighting the capacity for this genus to produce natural antimicrobial compounds which could be employed to control undesirable bacteria in the healthcare and food production sectors.


Assuntos
Anti-Infecciosos/química , Bactérias/química , Rhodobacteraceae/química , Animais , Antibacterianos/química , Produtos Biológicos/química , Biologia Marinha/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA