Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Toxicol Appl Pharmacol ; 483: 116832, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38266872

RESUMO

Iron deficiency anemia is caused by many pathological conditions like chronic kidney disease (CKD), inflammation, malnutrition and gastrointestinal abnormality. Current treatments that are erythropoiesis stimulating agents (ESAs) and iron supplementation are inadequate and often lead to tolerance and/or toxicity. Desidustat, a prolyl hydroxylase (PHD) inhibitor, is clinically used for the treatment of anemia with CKD. In this study, we investigated the effect of desidustat on iron deficiency anemia (IDA). IDA was induced in C57BL6/J mice by iron deficient diet feeding. These mice were then treated with desidustat (15 mg/kg, PO) and FeSO4 (20 mg/kg) for five weeks and effect of the treatment on hematology, iron homeostasis, and bone marrow histology was observed. Effect of desidustat on iron metabolism in inflammation (LPS)-induced iron deficiency was also assessed. Both, Desidustat and FeSO4, increased MCV (mean corpuscular volume), MCH (mean corpuscular hemoglobin), hemoglobin, and HCT (hematocrit) in blood and increased iron in serum, liver, and spleen. Desidustat increased MCHC (mean corpuscular hemoglobin concentration) while FeSO4 treatment did not alter it. FeSO4 treatment significantly increased iron deposition in liver, and spleen, while desidustat increased iron in circulation and demonstrated efficient iron utilization. Desidustat increased iron absorption, serum iron and decreased hepcidin without altering tissue iron, while FeSO4 increased serum and tissue iron by increasing hepcidin in LPS-induced iron deficiency. Desidustat increased erythroid population, especially iron-dependent polychromatic normoblasts and orthochromatic normoblasts, while FeSO4 did not improve cell architecture. PHD inhibition by desidustat improved iron utilization in iron deficiency anemia, by efficient erythropoiesis.


Assuntos
Anemia Ferropriva , Inibidores de Prolil-Hidrolase , Quinolonas , Insuficiência Renal Crônica , Camundongos , Animais , Anemia Ferropriva/tratamento farmacológico , Hepcidinas/metabolismo , Inibidores de Prolil-Hidrolase/farmacologia , Inibidores de Prolil-Hidrolase/uso terapêutico , Lipopolissacarídeos , Ferro/metabolismo , Inflamação/metabolismo , Hemoglobinas/análise
2.
Int Immunopharmacol ; 142(Pt A): 113029, 2024 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-39216116

RESUMO

Autoimmune hemolytic anemia (AIHA) is a heterogeneous group of diseases mediated by autoantibody directed against RBCs causing hemolysis and anemia. AIHA develops rapidly or over time, depending on the triggering factor. Desidustat is a prolyl hydroxylase inhibitor clinically used for the treatment of chronic kidney disease (CKD)-induced anemia. In this study, we investigated the effect of desidustat in preclinical model of AIHA. We used rat RBC for induction of AIHA in mice. These mice were then treated with desidustat (15 mg/kg, PO, once a day) for eight weeks. Desidustat treatment increased hemoglobin, RBC and hematocrit and decreased WBC and lymphocytes. This treatment suppressed serum LDH, oxidative stress in RBCs, antibody titer and antibody deposition on RBC surface, and increased RBC lifespan. Serum and spleen iron along with spleen mass and oxidative stress were decreased by desidustat. Bone marrow iron was increased and expression of CD71 (cell surface marker for early erythroid progenitor) and TER-119 (cell surface marker for late erythroid progenitor) in bone marrow were found to be elevated by desidustat by treatment. This treatment also suppressed deposition of membrane-bound antibody in late erythroid cells. The treatment showed reduction in total splenic cells, CD71 and TER-119 positive cells in the spleen. Thus, desidustat treatment increased erythropoiesis, early maturation of bone marrow erythroid cells having longer RBC life span due to decrease in the antibody-mediated lysis of RBCs and its progenitors leading to reduced oxidative stress. Thus, desidustat can be a good therapeutic option for treatment of AIHA.

3.
Drug Res (Stuttg) ; 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38991528

RESUMO

Complement cascade is a defence mechanism useful for eliminating pathogenic microorganisms and damaged cells. However, activation of alternative complement system can also cause inflammation and promote kidney and retinal disease progression. Inflammation causes tissue hypoxia, which induces hypoxia-inducible factor (HIF) and HIF helps the body to adapt to inflammation. In this study, we investigated the effect of HIF stabilizer desidustat in complement-mediated diseases. Oral administration of desidustat (15 mg/kg) was effective to reduce the kidney injury in mice that was induced by either lipopolysaccharide (LPS), doxorubicin or bovine serum albumin (BSA)-overload. Complement activation-induced membrane attack complex (MAC) formation and factor B activity were also reduced by desidustat treatment. In addition, desidustat was effective against membranous nephropathy caused by cationic BSA and retinal degeneration induced by sodium iodate in mice. C3-deposition, proteinuria, malondialdehyde, and interleukin-1ß were decreased and superoxide dismutase was increased by desidustat treatment in cBSA-induced membranous nephropathy. Desidustat specifically inhibited alternative complement system, without affecting the lectin-, or classical complement pathway. This effect appears to be mediated by inhibition of factor B. These data demonstrate the potential therapeutic value of HIF stabilization by desidustat in treatment of complement-mediated diseases.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA