RESUMO
BACKGROUND: Dengue fever is one of the most prevalent mosquito-borne diseases in Cambodia. Until now, no specific vaccine nor antiviral treatment exists the virus causing Dengue fever. Consequently, its prevention relies only on vector control strategies. However, efficient vector control in turn relies on a good knowledge of the biology of the vector species. Therefore, this study aims to provide the first review of the distribution, ecology, meteorological impacts, trophic behavior, vector competence, vector control and insecticide resistance of dengue vector species in Cambodia. METHODS: A systematic search of the Google Scholar and PubMed databases was conducted for relevant published articles. Of the 610 published articles originally identified, 70 articles were ultimately selected for inclusion in this review. We also included new data from unpublished research conducted in Cambodia between 2017 and 2023 related to dengue vector bionomics. RESULTS: Eleven Aedes (Stegomyia) mosquito species have been recorded in Cambodia, including a new species described in 2024. Four species are associated with dengue virus transmission, among which Aedes aegypti and Ae. albopictus are the main vectors and Ae. malayensis and Ae. scutellaris are considered to be potential vectors. Aedes aegypti and Ae. albopictus are present in all provinces of Cambodia. Aedes albopictus shows a preference for forest, rural and suburban areas, while Ae. aegypti is mostly found in urban and suburban areas. The distribution of these two species is also influenced by meteorological factors, seasonality and the availability of breeding habitats and blood meals. Both species are predominant during the rainy season, and their respective density is impacted by precipitation and temperature. Aedes aegypti is characterized as anthropophilic, while Ae. albopictus exhibits zooanthropophilic behavior, and both species have been observed to be predominantly diurnal. In addition, they were found to be highly resistant to the insecticides used in Cambodia for their control, such as temephos for larvae and deltamethrin and permethrin for adult mosquitoes. CONCLUSIONS: This review provides extensive and important knowledge on dengue vectors in Cambodia. This knowledge is derived not only from published research articles but also from many recent studies in Cambodia on the bionomics of dengue vector species. The review provides valuable information for use by public health authorities on dengue virus transmission and to develop better vector control strategies in the country.
Assuntos
Aedes , Dengue , Resistência a Inseticidas , Controle de Mosquitos , Mosquitos Vetores , Camboja/epidemiologia , Animais , Mosquitos Vetores/virologia , Mosquitos Vetores/fisiologia , Dengue/transmissão , Dengue/epidemiologia , Aedes/virologia , Aedes/fisiologia , Aedes/efeitos dos fármacos , Humanos , Controle de Mosquitos/métodos , Inseticidas/farmacologia , Vírus da Dengue/efeitos dos fármacosRESUMO
(1) Background: In Cambodia, Aedes albopictus is an important vector of the dengue virus. Vector control using insecticides is a major strategy implemented in managing mosquito-borne diseases. Resistance, however, threatens to undermine the use of insecticides. In this study, we present the levels of insecticide resistance of Ae. albopictus in Cambodia and the mechanisms involved. (2) Methods: Two Ae. albopictus populations were collected from the capital, Phnom Penh city, and from rural Pailin province. Adults were tested with diagnostic doses of malathion (0.8%), deltamethrin (0.03%), permethrin (0.25%), and DDT (4%) using WHO tube assays. Synergist assays using piperonyl butoxide (PBO) were implemented before the pyrethroid assays to detect the potential involvement of metabolic resistance mechanisms. Adult female mosquitoes collected from Phnom Penh and Pailin were tested for voltage-gated sodium channel (VGSC) kdr (knockdown resistance) mutations commonly found in Aedes sp.-resistant populations throughout Asia (S989P, V1016G, and F1534C), as well as for other mutations (V410L, L982W, A1007G, I1011M, T1520I, and D1763Y). (3) Results: The two populations showed resistance against all the insecticides tested (<90% mortality). The use of PBO (an inhibitor of P450s) strongly restored the efficacy of deltamethrin and permethrin against the two resistant populations. Sequences of regions of the vgsc gene showed a lack of kdr mutations known to be associated with pyrethroid resistance. However, four novel non-synonymous mutations (L412P/S, C983S, Q1554STOP, and R1718L) and twenty-nine synonymous mutations were detected. It remains to be determined whether these mutations contribute to pyrethroid resistance. (4) Conclusions: Pyrethroid resistance is occurring in two Ae. albopictus populations originating from urban and rural areas of Cambodia. The resistance is likely due to metabolic resistance specifically involving P450s monooxygenases. The levels of resistance against different insecticide classes are a cause for concern in Cambodia. Alternative tools and insecticides for controlling dengue vectors should be used to minimize disease prevalence in the country.
RESUMO
Improved control of Plasmodium vivax malaria can be achieved with the discovery of new antimalarials with radical cure efficacy, including prevention of relapse caused by hypnozoites residing in the liver of patients. We screened several compound libraries against P. vivax liver stages, including 1565 compounds against mature hypnozoites, resulting in one drug-like and several probe-like hits useful for investigating hypnozoite biology. Primaquine and tafenoquine, administered in combination with chloroquine, are currently the only FDA-approved antimalarials for radical cure, yet their activity against mature P. vivax hypnozoites has not yet been demonstrated in vitro. By developing an extended assay, we show both drugs are individually hypnozonticidal and made more potent when partnered with chloroquine, similar to clinically relevant combinations. Post-hoc analyses of screening data revealed excellent performance of ionophore controls and the high quality of single point assays, demonstrating a platform able to support screening of greater compound numbers. A comparison of P. vivax liver stage activity data with that of the P. cynomolgi blood, P. falciparum blood, and P. berghei liver stages reveals overlap in schizonticidal but not hypnozonticidal activity, indicating that the delivery of new radical curative agents killing P. vivax hypnozoites requires an independent and focused drug development test cascade.