Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS Biol ; 12(11): e1001985, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25369313

RESUMO

Glial cells are exquisitely sensitive to neuronal injury but mechanisms by which glia establish competence to respond to injury, continuously gauge neuronal health, and rapidly activate reactive responses remain poorly defined. Here, we show glial PI3K signaling in the uninjured brain regulates baseline levels of Draper, a receptor essential for Drosophila glia to sense and respond to axonal injury. After injury, Draper levels are up-regulated through a Stat92E-modulated, injury-responsive enhancer element within the draper gene. Surprisingly, canonical JAK/STAT signaling does not regulate draper expression. Rather, we find injury-induced draper activation is downstream of the Draper/Src42a/Shark/Rac1 engulfment signaling pathway. Thus, PI3K signaling and Stat92E are critical in vivo regulators of glial responsiveness to axonal injury. We provide evidence for a positive auto-regulatory mechanism whereby signaling through the injury-responsive Draper receptor leads to Stat92E-dependent, transcriptional activation of the draper gene. We propose that Drosophila glia use this auto-regulatory loop as a mechanism to adjust their reactive state following injury.


Assuntos
Lesão Axonal Difusa/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Neuroglia/fisiologia , Fosfatidilinositol 3-Quinases/metabolismo , Fatores de Transcrição STAT/metabolismo , Animais , Axônios/metabolismo , Encéfalo/metabolismo , Drosophila , Proteínas de Drosophila/genética , Elementos Facilitadores Genéticos , Regulação da Expressão Gênica , Janus Quinases/metabolismo , Proteínas de Membrana/genética , Neurônios Receptores Olfatórios/fisiologia , Transdução de Sinais
2.
Proc Natl Acad Sci U S A ; 111(34): 12544-9, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25099352

RESUMO

Nervous system injury or disease leads to activation of glia, which govern postinjury responses in the nervous system. Axonal injury in Drosophila results in transcriptional up-regulation of the glial engulfment receptor Draper; there is extension of glial membranes to the injury site (termed activation), and then axonal debris is internalized and degraded. Loss of the small GTPase Rac1 from glia completely suppresses glial responses to injury, but upstream activators remain poorly defined. Loss of the Rac guanine nucleotide exchange factor (GEF) Crk/myoblast city (Mbc)/dCed-12 has no effect on glial activation, but blocks internalization and degradation of debris. Here we show that the signaling molecules downstream of receptor kinase (DRK) and daughter of sevenless (DOS) (mammalian homologs, Grb2 and Gab2, respectively) and the GEF son of sevenless (SOS) (mammalian homolog, mSOS) are required for efficient activation of glia after axotomy and internalization/degradation of axonal debris. At the earliest steps of glial activation, DRK/DOS/SOS function in a partially redundant manner with Crk/Mbc/dCed-12, with blockade of both complexes strongly suppressing all glial responses, similar to loss of Rac1. This work identifies DRK/DOS/SOS as the upstream Rac GEF complex required for glial responses to axonal injury, and demonstrates a critical requirement for multiple GEFs in efficient glial activation after injury and internalization/degradation of axonal debris.


Assuntos
Proteínas de Drosophila/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/fisiologia , Proteínas do Olho/fisiologia , Neuroglia/fisiologia , Proteína Son Of Sevenless de Drosófila/fisiologia , Proteínas rac de Ligação ao GTP/fisiologia , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Adaptadoras de Transdução de Sinal/fisiologia , Animais , Animais Geneticamente Modificados , Axônios/fisiologia , Proteínas do Citoesqueleto/genética , Proteínas do Citoesqueleto/fisiologia , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Proteínas do Olho/genética , Genes de Insetos , Mutação , Degeneração Neural , Fagossomos/fisiologia , Proteínas Proto-Oncogênicas c-crk/genética , Proteínas Proto-Oncogênicas c-crk/fisiologia , Proteína Son Of Sevenless de Drosófila/genética , Proteínas rac de Ligação ao GTP/genética , Proteínas ras/genética , Proteínas ras/fisiologia
3.
Cell Death Differ ; 29(11): 2275-2287, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35523956

RESUMO

Autophagy targets cytoplasmic materials for degradation, and influences cell health. Alterations in Atg6/Beclin-1, a key regulator of autophagy, are associated with multiple diseases. While the role of Atg6 in autophagy regulation is heavily studied, the role of Atg6 in organism health and disease progression remains poorly understood. Here, we discover that loss of Atg6 in Drosophila results in various alterations to stress, metabolic and immune signaling pathways. We find that the increased levels of circulating blood cells and tumor-like masses in atg6 mutants vary depending on tissue-specific function of Atg6, with contributions from intestine and hematopoietic cells. These phenotypes are suppressed by decreased function of macrophage and inflammatory response receptors crq and drpr. Thus, these findings provide a basis for understanding how Atg6 systemically regulates cell health within multiple organs, and highlight the importance of Atg6 in inflammation to organismal health.


Assuntos
Autofagia , Transdução de Sinais , Humanos , Proteína Beclina-1/metabolismo , Autofagia/genética , Inflamação
4.
J Neurosci ; 29(15): 4768-81, 2009 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-19369546

RESUMO

The mammalian brain contains many subtypes of glia that vary in their morphologies, gene expression profiles, and functional roles; however, the functional diversity of glia in the adult Drosophila brain remains poorly defined. Here we define the diversity of glial subtypes that exist in the adult Drosophila brain, show they bear striking similarity to mammalian brain glia, and identify the major phagocytic cell type responsible for engulfing degenerating axons after acute axotomy. We find that neuropil regions contain two different populations of glia: ensheathing glia and astrocytes. Ensheathing glia enwrap major structures in the adult brain, but are not closely associated with synapses. Interestingly, we find these glia uniquely express key components of the glial phagocytic machinery (e.g., the engulfment receptor Draper, and dCed-6), respond morphologically to axon injury, and autonomously require components of the Draper signaling pathway for successful clearance of degenerating axons from the injured brain. Astrocytic glia, in contrast, do not express Draper or dCed-6, fail to respond morphologically to axon injury, and appear to play no role in clearance of degenerating axons from the brain. However, astrocytic glia are closely associated with synaptic regions in neuropil, and express excitatory amino acid transporters, which are presumably required for the clearance of excess neurotransmitters at the synaptic cleft. Together these results argue that ensheathing glia and astrocytes are preprogrammed cell types in the adult Drosophila brain, with ensheathing glia acting as phagocytes after axotomy, and astrocytes potentially modulating synapse formation and signaling.


Assuntos
Encéfalo/crescimento & desenvolvimento , Bainha de Mielina/fisiologia , Neuroglia/fisiologia , Fagócitos/fisiologia , Fatores Etários , Animais , Encéfalo/citologia , Drosophila , Neuroglia/citologia , Fagócitos/citologia
5.
Trends Neurosci ; 29(2): 82-90, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16377000

RESUMO

Glia are the most abundant cell type in the mammalian nervous system and they have vital roles in neural development, function and health. However our understanding of the biology of glia is in its infancy. How do glia develop and interact with neurons? How diverse are glial populations? What are the primary functions of glia in the mature nervous system? These questions can be addressed incisively in the Drosophila nervous system--this contains relatively few glia, which are well-defined histologically and amenable to powerful molecular-genetic analyses. Here, we highlight several developmental, morphological and functional similarities between Drosophila and vertebrate glia. The striking parallels that emerge from this comparison argue that invertebrate model organisms such as Drosophila have excellent potential to add to our understanding of fundamental aspects of glial biology.


Assuntos
Drosophila/fisiologia , Neuroglia/fisiologia , Vertebrados/fisiologia , Animais , Humanos , Fenômenos Fisiológicos do Sistema Nervoso , Neuroglia/classificação , Neurônios/fisiologia
6.
Nat Cell Biol ; 20(10): 1110-1117, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30224761

RESUMO

Autophagy influences cell survival through maintenance of cell bioenergetics and clearance of protein aggregates and damaged organelles. Several lines of evidence indicate that autophagy is a multifaceted regulator of cell death, but controversy exists over whether autophagy alone can drive cell death under physiologically relevant circumstances. Here, we review the role of autophagy in cell death and examine how autophagy interfaces with other forms of cell death including apoptosis and necrosis.


Assuntos
Apoptose/fisiologia , Autofagia/fisiologia , Animais , Proteínas Relacionadas à Autofagia/metabolismo , Caspases/metabolismo , Morte Celular/fisiologia , Sobrevivência Celular/fisiologia , Humanos , Modelos Biológicos , Necrose
7.
Cell Rep ; 16(7): 1838-50, 2016 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-27498858

RESUMO

Neuronal injury triggers robust responses from glial cells, including altered gene expression and enhanced phagocytic activity to ensure prompt removal of damaged neurons. The molecular underpinnings of glial responses to trauma remain unclear. Here, we find that the evolutionarily conserved insulin-like signaling (ILS) pathway promotes glial phagocytic clearance of degenerating axons in adult Drosophila. We find that the insulin-like receptor (InR) and downstream effector Akt1 are acutely activated in local ensheathing glia after axotomy and are required for proper clearance of axonal debris. InR/Akt1 activity, it is also essential for injury-induced activation of STAT92E and its transcriptional target draper, which encodes a conserved receptor essential for glial engulfment of degenerating axons. Increasing Draper levels in adult glia partially rescues delayed clearance of severed axons in glial InR-inhibited flies. We propose that ILS functions as a key post-injury communication relay to activate glial responses, including phagocytic activity.


Assuntos
Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Insulina/metabolismo , Proteínas de Membrana/genética , Neuroglia/metabolismo , Neurônios/metabolismo , Receptores Proteína Tirosina Quinases/genética , Animais , Axotomia , Comunicação Celular , Proteínas de Drosophila/deficiência , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Proteínas de Membrana/metabolismo , Neuroglia/citologia , Neurônios/patologia , Nervo Olfatório/cirurgia , Fagocitose , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Proteína Tirosina Quinases/deficiência , Fatores de Transcrição STAT/genética , Fatores de Transcrição STAT/metabolismo , Transdução de Sinais
8.
Nat Neurosci ; 15(7): 979-87, 2012 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-22706267

RESUMO

Glial cells efficiently recognize and clear cellular debris after nervous system injury to maintain brain homeostasis, but pathways governing glial responses to neural injury remain poorly defined. We identify the Drosophila melanogaster guanine nucleotide exchange factor complex Crk/Mbc/dCed-12 and the small GTPase Rac1 as modulators of glial clearance of axonal debris. We found that Crk/Mbc/dCed-12 and Rac1 functioned in a non-redundant fashion with the Draper transmembrane receptor pathway: loss of either pathway fully suppressed clearance of axonal debris. Draper signaling was required early during glial responses, promoting glial activation, which included increased Draper and dCed-6 expression and extension of glial membranes to degenerating axons. In contrast, the Crk/Mbc/dCed-12 complex functioned at later phases, promoting glial phagocytosis of axonal debris. Our work identifies new components of the glial engulfment machinery and shows that glial activation, phagocytosis of axonal debris and termination of responses to injury are genetically separable events mediated by distinct signaling pathways.


Assuntos
Axônios , Neuroglia/metabolismo , Neurônios Receptores Olfatórios/metabolismo , Fagocitose , Animais , Axônios/metabolismo , Axônios/patologia , Axônios/fisiologia , Axotomia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Drosophila melanogaster/fisiologia , Técnicas de Inativação de Genes , Vias Neurais/metabolismo , Vias Neurais/patologia , Vias Neurais/fisiologia , Neuroglia/patologia , Neuroglia/fisiologia , Neurônios Receptores Olfatórios/patologia , Fagocitose/genética
9.
Nat Neurosci ; 15(5): 722-30, 2012 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-22426252

RESUMO

Neuronal injury elicits potent cellular responses from glia, but molecular pathways modulating glial activation, phagocytic function and termination of reactive responses remain poorly defined. Here we show that positive or negative regulation of glial responses to axon injury is molecularly encoded by unique isoforms of the Drosophila melanogaster engulfment receptor Draper. Draper-I promotes engulfment of axonal debris through an immunoreceptor tyrosine-based activation motif (ITAM). In contrast, Draper-II, an alternative splice variant, potently inhibits glial engulfment function. Draper-II suppresses Draper-I signaling through a previously undescribed immunoreceptor tyrosine-based inhibitory motif (ITIM)-like domain and the tyrosine phosphatase Corkscrew (Csw). Intriguingly, loss of Draper-II-Csw signaling prolongs expression of glial engulfment genes after axotomy and reduces the ability of glia to respond to secondary axotomy. Our work highlights a novel role for Draper-II in inhibiting glial responses to neurodegeneration, and indicates that a balance of opposing Draper-I and Draper-II signaling events is essential to maintain glial sensitivity to brain injury.


Assuntos
Axônios/fisiologia , Proteínas de Drosophila/metabolismo , Proteínas de Membrana/metabolismo , Degeneração Neural/metabolismo , Neuroglia/fisiologia , Neurônios/citologia , Animais , Animais Geneticamente Modificados , Apoptose/genética , Apoptose/fisiologia , Axotomia , Drosophila , Proteínas de Drosophila/genética , Regulação da Expressão Gênica/genética , Regulação da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Imunoprecipitação , Proteínas de Membrana/genética , Neuroglia/citologia , Condutos Olfatórios/citologia , Condutos Olfatórios/lesões , Fagocitose/genética , Fagocitose/fisiologia , Ligação Proteica/genética , Domínios e Motivos de Interação entre Proteínas/genética , Domínios e Motivos de Interação entre Proteínas/fisiologia , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Proteínas Tirosina Fosfatases/genética , Proteínas Tirosina Fosfatases/metabolismo , Interferência de RNA/fisiologia , Transdução de Sinais/genética , Transdução de Sinais/fisiologia , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA