Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Microbiol ; 24(5): 2201-2209, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35049133

RESUMO

In-depth knowledge about spatial and temporal variation in microbial diversity and function is needed for a better understanding of ecological and evolutionary responses to global change. In particular, the study of microbial ancient DNA preserved in sediment archives from lakes and oceans can help us to evaluate the responses of aquatic microbes in the past and make predictions about future biodiversity change in those ecosystems. Recent advances in molecular genetic methods applied to the analysis of historically deposited DNA in sediments have not only allowed the taxonomic identification of past aquatic microbial communities but also enabled tracing their evolution and adaptation to episodic disturbances and gradual environmental change. Nevertheless, some challenges remain for scientists to take full advantage of the rapidly developing field of paleo-genetics, including the limited ability to detect rare taxa and reconstruct complete genomes for evolutionary studies. Here, we provide a brief review of some of the recent advances in the field of environmental paleomicrobiology and discuss remaining challenges related to the application of molecular genetic methods to study microbial diversity, ecology, and evolution in sediment archives. We anticipate that, in the near future, environmental paleomicrobiology will shed new light on the processes of microbial genome evolution and microbial ecosystem responses to quaternary environmental changes at an unprecedented level of detail. This information can, for example, aid geological reconstructions of biogeochemical cycles and predict ecosystem responses to environmental perturbations, including in the context of human-induced global changes.


Assuntos
Ecossistema , Microbiota , Biodiversidade , DNA , Sedimentos Geológicos/microbiologia , Humanos , Lagos/microbiologia , Microbiota/genética
2.
Microb Ecol ; 82(3): 559-571, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33538855

RESUMO

Understanding temporal and spatial microbial community abundance and diversity variations is necessary to assess the functional roles played by microbial actors in the environment. In this study, we investigated spatial variability and temporal dynamics of two functional microbial sediment communities, methanogenic Archaea and methanotrophic bacteria, in Lake Bourget, France. Microbial communities were studied from 3 sites sampled 4 times over a year, with one core sampled at each site and date, and 5 sediment layers per core were considered. Microbial abundance in the sediment were determined using flow cytometry. Methanogens and methanotrophs community structures, diversity, and abundance were assessed using T-RFLP, sequencing, and real-time PCR targeting mcrA and pmoA genes, respectively. Changes both in structure and abundance were detected mainly at the water-sediment interface in relation to the lake seasonal oxygenation dynamics. Methanogen diversity was dominated by Methanomicrobiales (mainly Methanoregula) members, followed by Methanosarcinales and Methanobacteriales. For methanotrophs, diversity was dominated by Methylobacter in the deeper area and by Methylococcus in the shallow area. Organic matter appeared to be the main environmental parameter controlling methanogens, while oxygen availability influenced both the structure and abundance of the methanotrophic community.


Assuntos
Euryarchaeota , Methylococcaceae , Archaea/genética , Euryarchaeota/genética , Sedimentos Geológicos , Lagos , Metano , Methylococcaceae/genética , Filogenia , RNA Ribossômico 16S/genética , Estações do Ano
3.
Environ Microbiol ; 21(10): 3885-3895, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31299138

RESUMO

Trebouxiophyceae are a ubiquitous class of Chlorophyta encountered in aquatic and terrestrial environments. Most taxa are photosynthetic, and many acts as photobionts in symbiotic relationships, while others are free-living. Trebouxiophyceae have also been widely investigated for their use for biotechnological applications. In this work, we aimed at obtaining a comprehensive image of their diversity by compiling the information of 435 freshwater, soil and marine environmental DNA samples surveyed with Illumina sequencing technology in order to search for the most relevant environments for bioprospecting. Freshwater and soil were most diverse and shared more than half of all operational taxonomic units (OTUs), however, their communities were significantly distinct. Oceans hosted the highest genetic novelty, and did not share any OTUs with the other environments; also, marine samples host more diversity in warm waters. Symbiotic genera usually found in lichens such as Trebouxia, Myrmecia and Symbiochloris were also abundantly detected in the ocean, suggesting either free-living lifestyles or unknown symbiotic relationships with marine planktonic organisms. Altogether, our study opens the way to new prospection for trebouxiophycean strains, especially in understudied environments like the ocean.


Assuntos
Clorófitas/classificação , Clorófitas/genética , Líquens/citologia , Plâncton/citologia , Simbiose/fisiologia , Organismos Aquáticos/fisiologia , Água Doce , Sequenciamento de Nucleotídeos em Larga Escala , Oceanos e Mares , Filogenia
4.
Environ Microbiol ; 19(7): 2873-2892, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28585365

RESUMO

High-throughput sequencing of sedimentary DNA (sed-DNA) was utilized to reconstruct the temporal dynamics of microbial eukaryotic communities (MECs) at a centennial scale in two re-oligotrophicated lakes that were exposed to different levels of phosphorus enrichment. The temporal changes within the MECs were expressed in terms of richness, composition and community structure to investigate their relationships with two key forcing factors (i.e., nutrient enrichment and climate warming). Various groups, including Apicomplexa, Cercozoa, Chrysophyceae, Ciliophora, Chlorophyceae and Dinophyceae, responded to phosphorus enrichment levels with either positive or negative impacts on their richness and relative abundance. For both lakes, statistical modelling demonstrated that phosphorus concentration ([P]) was a dominant contributor to MECs modifications before the 1980s; after the mid-80s, the contribution of air temperature changes increased and potentially surpassed the contribution of [P]. Co-occurrence network analysis revealed that some clusters of taxa (i.e., modules) composed mainly of Dinophyceae and unclassified Alveolata were strongly correlated to air temperature in both lakes. Overall, our data showed that sed-DNA constitutes a precious archive of information on past biodiversity changes, allowing the study of the dynamics of numerous eukaryotic groups that were not traditionally considered in paleo-reconstructions.


Assuntos
Chrysophyta/metabolismo , Cilióforos/metabolismo , Eutrofização/fisiologia , Lagos/parasitologia , Biodiversidade , Chrysophyta/genética , Chrysophyta/isolamento & purificação , Cilióforos/genética , Cilióforos/isolamento & purificação , Clima , DNA de Protozoário/genética , Lagos/química , Fósforo
5.
Mol Ecol ; 25(23): 5925-5943, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27761959

RESUMO

Assessing the extent to which changes in lacustrine biodiversity are affected by anthropogenic or climatic forces requires extensive palaeolimnological data. We used high-throughput sequencing to generate time-series data encompassing over 2200 years of microbial eukaryotes (protists and Fungi) diversity changes from the sedimentary DNA record of two lakes (Lake Bourget in French Alps and Lake Igaliku in Greenland). From 176 samples, we sequenced a large diversity of microbial eukaryotes, with a total 16 386 operational taxonomic units distributed within 50 phylogenetic groups. Thus, microbial groups, such as Chlorophyta, Dinophyceae, Haptophyceae and Ciliophora, that were not previously considered in lacustrine sediment record analyses appeared to be potential biological markers of trophic status changes. Our data suggest that shifts in relative abundance of extant species, including shifts between rare and abundant taxa, drive ecosystem responses to local and global environmental changes. Community structure shift events were concomitant with major climate variations (more particularly in Lake Igaliku). However, this study shows that the impacts of climatic fluctuations may be overpassed by the high-magnitude eutrophication impacts, as observed in the eutrophicated Lake Bourget. Overall, our data show that DNA preserved in sediment constitutes a precious archive of information on past biodiversity changes.


Assuntos
Biodiversidade , Lagos , Microbiologia da Água , Clima , Ecossistema , Eucariotos/classificação , Eutrofização , França , Fungos/classificação , Sedimentos Geológicos , Groenlândia , Filogenia , Dinâmica Populacional
6.
Proc Natl Acad Sci U S A ; 110(15): 6004-9, 2013 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-23536290

RESUMO

Marine Archaea are important players among microbial plankton and significantly contribute to biogeochemical cycles, but details regarding their community structure and long-term seasonal activity and dynamics remain largely unexplored. In this study, we monitored the interannual archaeal community composition of abundant and rare biospheres in northwestern Mediterranean Sea surface waters by pyrosequencing 16S rDNA and rRNA. A detailed analysis of the rare biosphere structure showed that the rare archaeal community was composed of three distinct fractions. One contained the rare Archaea that became abundant at different times within the same ecosystem; these cells were typically not dormant, and we hypothesize that they represent a local seed bank that is specific and essential for ecosystem functioning through cycling seasonal environmental conditions. The second fraction contained cells that were uncommon in public databases and not active, consisting of aliens to the studied ecosystem and representing a nonlocal seed bank of potential colonizers. The third fraction contained Archaea that were always rare but actively growing; their affiliation and seasonal dynamics were similar to the abundant microbes and could not be considered a seed bank. We also showed that the major archaeal groups, Thaumarchaeota marine group I and Euryarchaeota group II.B in winter and Euryarchaeota group II.A in summer, contained different ecotypes with varying activities. Our findings suggest that archaeal diversity could be associated with distinct metabolisms or life strategies, and that the rare archaeal biosphere is composed of a complex assortment of organisms with distinct histories that affect their potential for growth.


Assuntos
Archaea/fisiologia , Ecótipo , Estações do Ano , Água do Mar , Archaea/genética , Biologia Computacional , DNA Ribossômico/genética , Ecologia , Mar Mediterrâneo , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de RNA , Microbiologia da Água
7.
Ecol Lett ; 18(4): 375-84, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25728551

RESUMO

Increases in atmospheric temperature and nutrients from land are thought to be promoting the expansion of harmful cyanobacteria in lakes worldwide, yet to date there has been no quantitative synthesis of long-term trends. To test whether cyanobacteria have increased in abundance over the past ~ 200 years and evaluate the relative influence of potential causal mechanisms, we synthesised 108 highly resolved sedimentary time series and 18 decadal-scale monitoring records from north temperate-subarctic lakes. We demonstrate that: (1) cyanobacteria have increased significantly since c. 1800 ce, (2) they have increased disproportionately relative to other phytoplankton, and (3) cyanobacteria increased more rapidly post c. 1945 ce. Variation among lakes in the rates of increase was explained best by nutrient concentration (phosphorus and nitrogen), and temperature was of secondary importance. Although cyanobacterial biomass has declined in some managed lakes with reduced nutrient influx, the larger spatio-temporal scale of sedimentary records show continued increases in cyanobacteria throughout the north temperate-subarctic regions.


Assuntos
Mudança Climática , Cianobactérias/crescimento & desenvolvimento , Lagos/microbiologia , Temperatura , Cianobactérias/classificação , Água Doce/química , Água Doce/microbiologia , Sedimentos Geológicos/microbiologia , Lagos/química , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Fatores de Tempo , Xantofilas/análise
8.
Mol Ecol ; 24(6): 1236-47, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25690883

RESUMO

Studies on the active rare biosphere at the RNA level are mainly focused on Bacteria and Archaea and fail to include the protists, which are involved in the main biogeochemical cycles of the earth. In this study, the richness, composition and activity of the rare protistan biosphere were determined from a temporal survey of two lakes by pyrosequencing. In these ecosystems, the always rare OTUs represented 77.2% of the total OTUs and 76.6% of the phylogenetic diversity. From the various phylogenetic indices computed, the phylogenetic units (PUs) constituted exclusively by always rare OTUs were discriminated from the other PUs. Therefore, the rare biosphere included mainly taxa that are distant from the reference databases compared to the dominant ones. In addition, the rarest OTUs represented 59.8% of the active biosphere depicted by rRNA and the activity (rRNA:rDNA ratio) increased with the rarity. The high rRNA:rDNA ratio determined in the rare fraction highlights that some protists were active at low abundances and contribute to ecosystem functioning. Interestingly, the always rare and active OTUs were characterized by seasonal changes in relation with the main environmental parameters measured. In conclusion, the rare eukaryotes represent an active, dynamic and overlooked fraction in the lacustrine ecosystems.


Assuntos
Ecossistema , Eucariotos/genética , Água Doce/microbiologia , Filogenia , Biota , Lagos/microbiologia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA , Microbiologia da Água
9.
Microb Ecol ; 70(4): 865-75, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26022714

RESUMO

Studies based on the coupling of a paleolimnological approach and molecular tools (e.g., sequencing of sedimentary DNA) present a promising opportunity to obtain long-term data on past lacustrine biodiversity. However, certain validations are still required, such as the evaluation of DNA preservation in sediments for various planktonic taxa that do not leave any morphological diagnostic features. In this study, we focused on the diversity of planktonic unicellular eukaryotes and verified the presence of their DNA in sediment archives. We compared the molecular inventories (high-throughput sequencing of 18S ribosomal DNA) obtained from monitoring the water column with those obtained for DNA archived in the first 30 cm of sediment. Seventy-one percent of taxonomic units found in the water samples were detected in sediment samples, including pigmented taxa, such as Chlorophyta, Dinophyceae, and Chrysophyceae, phagotrophic taxa, such as Ciliophora, parasitic taxa, such as Apicomplexa and Chytridiomycota, and saprotrophs, such as Cryptomycota. Parallel analysis of 18S ribosomal RNA (rRNA) transcripts revealed the presence of living eukaryotic taxa only in the top 2 cm of sediment; although some limits exist in using RNA/DNA ratio as indicator of microbial activity, these results suggested that the sedimentary DNA mostly represented DNA from past and inactive communities. Only the diversity of a few groups, such as Cryptophyta and Haptophyta, seemed to be poorly preserved in sediments. Our overall results showed that the application of sequencing techniques to sedimentary DNA could be used to reconstruct past diversity for numerous planktonic eukaryotic groups.


Assuntos
Biodiversidade , Eucariotos/classificação , Eucariotos/genética , Sedimentos Geológicos/microbiologia , Sedimentos Geológicos/parasitologia , Plâncton/classificação , Plâncton/genética , DNA Ribossômico/genética , Fungos/classificação , Fungos/genética , Lagos/microbiologia , Lagos/parasitologia , Filogenia , RNA Ribossômico 18S/genética , Análise de Sequência de DNA
10.
Microb Ecol ; 70(2): 473-83, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25851445

RESUMO

To test if different niches for potential nitrifiers exist in estuarine systems, we assessed by pyrosequencing the diversity of archaeal gene transcript markers for taxonomy (16S ribosomal RNA (rRNA)) during an entire year along a salinity gradient in surface waters of the Charente estuary (Atlantic coast, France). We further investigated the potential for estuarine prokaryotes to oxidize ammonia and hydrolyze urea by quantifying thaumarchaeal amoA and ureC and bacterial amoA transcripts. Our results showed a succession of different nitrifiers from river to sea with bacterial amoA transcripts dominating in the freshwater station while archaeal transcripts were predominant in the marine station. The 16S rRNA sequence analysis revealed that Thaumarchaeota marine group I (MGI) were the most abundant overall but other archaeal groups like Methanosaeta were also potentially active in winter (December-March) and Euryarchaeota marine group II (MGII) were dominant in seawater in summer (April-August). Each station also contained different Thaumarchaeota MGI phylogenetic clusters, and the clusters' microdiversity was associated to specific environmental conditions suggesting the presence of ecotypes adapted to distinct ecological niches. The amoA and ureC transcript dynamics further indicated that some of the Thaumarchaeota MGI subclusters were involved in ammonia oxidation through the hydrolysis of urea. Our findings show that ammonia-oxidizing Archaea and Bacteria were adapted to contrasted conditions and that the Thaumarchaeota MGI diversity probably corresponds to distinct metabolisms or life strategies.


Assuntos
Archaea/genética , Archaea/classificação , Bactérias/classificação , Bactérias/genética , DNA Ribossômico , Estuários , Água Doce/microbiologia , Filogenia , Rios/microbiologia , Água do Mar/microbiologia
11.
Environ Monit Assess ; 186(6): 3455-76, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24452859

RESUMO

Lakes Annecy, Bourget, and Geneva are large, deep carbonated peri-alpine lakes in eastern France. They are located in the same ecoregion but have been subject to differing degrees of anthropogenic pressure over the past decades. A comparative analysis of these ecosystems can therefore provide valuable information on how the lakes have responded to changes in phosphorus runoff, fish management practices, and global warming. Each of these lakes has undergone a restoration process, and changes in water quality and trophic state, as measured using parameters like transparency, chlorophyll a, nutrient concentrations, and phytoplankton biomass and structure, can be used to evaluate efforts made to preserve these ecosystems. Our results reveal that (1) peri-alpine lakes are exemplary cases of restoration in the world where freshwater eutrophication is on the increase, and (2) efforts must be maintained because of the new context of climate change, the effects of which on the quality and the ecological functioning of lakes are still poorly understood.


Assuntos
Monitoramento Ambiental , Lagos/química , Animais , Biomassa , Clorofila/análise , Clorofila A , Mudança Climática , Ecossistema , Eutrofização , França , Aquecimento Global , Fósforo/análise , Fitoplâncton/crescimento & desenvolvimento , Poluentes Químicos da Água/análise
12.
Sci Total Environ ; 914: 169774, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38215838

RESUMO

Phytoplankton is a key biological group used to assess the ecological status of lakes. The classical monitoring approach relies on microscopic identification and counting of phytoplankton species, which is time-consuming and requires high taxonomic expertise. High-throughput sequencing, combined with metabarcoding, has recently demonstrated its potential as an alternative approach for plankton surveys. Several studies have confirmed the relevance of the diatom metabarcoding approach to calculate biotic indices based on species ecology. However, phytoplankton communities have not yet benefited from such validation. Here, by comparing the results obtained with the two methods (molecular and microscopic counting), we evaluated the relevance of metabarcoding approach for phytoplankton monitoring by considering different metrics: alpha diversity, taxonomic composition, community structure and a phytoplankton biotic index used to assess the trophic level of lakes. For this purpose, 55 samples were collected in four large alpine lakes (Aiguebelette, Annecy, Bourget, Geneva) during the year 2021. For each sample, a metabarcoding analysis based on two genetic markers (16S and 23S rRNA) was performed, in addition to the microscopic count. Regarding the trophic level of lakes, significant differences were found between index values obtained with the two approaches. The main hypothesis to explain these differences comes from the incompleteness, particularly at the species level, of the barcode reference library for the two genetic markers. It is therefore necessary to complete reference libraries for using such species-based biotic indices with metabarcoding data. Besides this, species richness and diversity were higher in the molecular inventories than in the microscopic ones. Moreover, despite differences in taxonomic composition of the floristic lists obtained by the two approaches, their community structures were similar. These results support the possibility of using metabarcoding for phytoplankton monitoring but in a different way. We suggest exploring alternative approaches to index development, such as a taxonomy-free approach.


Assuntos
Diatomáceas , Fitoplâncton , Fitoplâncton/genética , Lagos , Código de Barras de DNA Taxonômico , Marcadores Genéticos , Diatomáceas/genética , DNA
13.
Environ Microbiol ; 15(6): 1745-58, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23297806

RESUMO

The short-term variation in the community structure of freshwater small eukaryotes (0.2-5 µm) was investigated in a mesotrophic lake every 2-3 days over one summer by coupling three molecular methods: 454 amplicon pyrosequencing, qPCR and TSA-FISH. The pyrosequencing approach unveiled a much more extensive small-eukaryotic diversity (991 OTUs) than has been described previously. The vast majority of the diversity described was represented by rare OTUs (≤ 0.01% of reads) belonging primarily to Cryptomycota, Dikarya and photosynthetic organisms, which were never detected as abundant in any of the samples. The small eukaryote community was characterized by a continual and important reassembly. These rearrangements involved the 20 'core taxa' (≥ 1% of reads), and, were essentially due to a handful of OTUs that were detected in intermediate abundance (0.01-1% of reads) and sporadically in dominant taxa. Putative bacterivorous (Ciliophora and Cercozoa) as well as parasitic and saprotrophic taxa (Perkinsozoa and Cryptomycota) were involved in these changes of diversity. A putative infection of microalgae by a lacustrine perkinsozoan was also reported for the first time in this study. Open questions regarding both the patterns that govern the rapid small eukaryote reassemblies and the possible biogeography of these organisms arise from this study.


Assuntos
Biodiversidade , Eucariotos/fisiologia , Eucariotos/classificação , Eucariotos/genética , França , Água Doce , Fungos/genética , Fungos/fisiologia , Lagos/química , Análise de Sequência de DNA , Fatores de Tempo
14.
Oecologia ; 172(2): 551-62, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23129401

RESUMO

Cyanobacterial blooms induce significant costs that are expected to increase in the near future. Cyanobacterial resistance to zooplankton grazing is one factor thought to promote bloom events. Yet, numerous studies on zooplankton ability to graze upon cyanobacteria have been producing contradictory results and such a puzzle might arise from the lack of direct observations in situ. Our objective was to track, using fatty acid (FA) and fatty acid stable isotope analyses (FA-SIA), the fate of cyanobacterial organic matter in the food web of a lake subjected to summer blooms of Planktothrix rubescens. A metalimnetic bloom of P. rubescens occurred in Lake Bourget (France) during the study period (May-November 2009). The bloom was especially rich in α-linolenic acid, 18:3(n-3), but none of the considered zooplankton taxa exhibited spiking content in this particular FA. FA-SIA revealed, however, that over a quarter of 18:3(n-3) in small zooplankton (<500 µm) was provided by P. rubescens while large cladocerans (>500 µm) did not benefit from it. P. rubescens 18:3(n-3) could be tracked up to perch (Perca fluviatilis) young of the year (YOY) to which it contributed to ~15 % of total 18:3(n-3). Although transferred with a much lower efficiency than micro-algal organic matter, the P. rubescens bloom supported a significant share of the pelagic secondary production and did not constitute, sensu stricto, a 'trophic dead end'. The cyanobacterial bloom also provided perch YOY with components of high nutritional values at a season when these are critical for their recruitment. This cyanobacterial bloom might thus be regarded as a significant dietary bonus for juvenile fish.


Assuntos
Cianobactérias/metabolismo , Cadeia Alimentar , Percas/fisiologia , Animais , Isótopos de Carbono/análise , Ácidos Graxos/análise , França , Água Doce/microbiologia , Proliferação Nociva de Algas , Lagos/microbiologia , Microalgas , Modelos Biológicos , Zooplâncton , Ácido alfa-Linolênico/análise , Ácido alfa-Linolênico/metabolismo
15.
Data Brief ; 49: 109302, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37346926

RESUMO

We present two datasets composed of high frequency sensors data, vertical in situ profiles and laboratory chemical analysis data, acquired during two different aquatic mesocosm experiments performed at the OLA ("Long-term observation and experimentation for lake ecosystems") facility at the UMR CARRTEL in Thonon les Bains, on the French shore of Lake Geneva. The DOMLAC experiment lasted 3 weeks (4-21 October 2021) and aimed to simulate predicted climate scenarios (i.e. extreme events such as storms and floods) by reproducing changes in quality and composition of lake subsidies and runoff by increased inputs of terrestrial organic matter. The PARLAC experiment lasted 3 weeks (5-23 September 2022) and aimed to simulate turbid storms by light reduction. The experimental setup consisted of nine inland polyester laminated tanks (2.1 m length, 2.1 m width and 1.1 m depth) with a total volume of approximately 4000 L and filled with water directly supplied from the lake at 4m depth. Both experimental design included three treatments each replicated three times. The DOMLAC experiment involved a control treatment (no treatment applied) and two treatments simulating allochthonous inputs from two different dissolved organic matter (DOM) extract from peat moss Sphagnum sp. (Peat-Moss treatment) and Phragmites australis (Phragmite treatment). The PARLAC experiment involved a control treatment (no treatment applied) and two treatments simulating two different intensity of light reduction. In the Medium treatment transmitted light was reduced to 70% and in the High treatment transmitted light was reduced to 15%. The datasets are composed of: 1. In situ measures from automated data loggers of temperature, conductivity, dissolved oxygen and CO2 acquired every 5 minutes at 0.1, 0.5 and 1 m depth (DOMLAC) and 0.5m (PARLAC) for the entire period of the experiment. 2. In situ profiles (0-1 m) of temperature, conductivity, pH, dissolved oxygen (concentration and saturation) acquired twice a week during the experiment. 3. In situ measures of light spectral UV/VIS/IR irradiance (300-950 nm wavelength range) taken in the air and at 0, 0.5 and 1 m twice a week on the same day of the profiles at point 2. 4. Laboratory chemical analysis of integrated samples taken twice a week on the same day of the in situ profiles at point 2 and 3 of conductivity, pH, total alkalinity, NO3, total and particulate nitrogen (Ntot, Npart), PO4, total and particulate phosphorus (Ptot, Ppart), total and particulate organic carbon (TOC, POC), Ca, K, Mg, Na, Cl, SO4 and SiO2. Only for DOMLAC also analyses of NH4, NO2 and dissolved organic carbon (DOC). 5. Laboratory analysis of pigments (Chla, Chlc, carotenoids, phaeopigments) extracted from samples collected at point 4. 6. Only for DOMLAC, specific absorbance on the range 600-200nm of DOM (i.e. <0.7 µm) measured on samples collected at point 4. This dataset aims to contribute our understanding of how extreme climate events can alter lake subsidies and affect the regulation of ecosystem processes such as production, respiration, nutrient uptake and pigment composition. The data can be used for a wide range of applications as being included in meta-analysis aiming at generalising the effect of climate change on large lakes including simulating future scenarios in a broad range of geographical areas as we used different inputs of DOM leached from litters reproducing catchments characteristics typical of different latitudes, such as mostly dominated by large leaf forests and phragmites at middle latitude, and coniferous forests rich of peat mosses that spread along the water surface typical of Northern regions.

16.
BMC Microbiol ; 12: 202, 2012 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-22966751

RESUMO

BACKGROUND: Small size eukaryotes play a fundamental role in the functioning of coastal ecosystems, however, the way in which these micro-organisms respond to combined effects of water temperature, UVB radiations (UVBR) and nutrient availability is still poorly investigated. RESULTS: We coupled molecular tools (18S rRNA gene sequencing and fingerprinting) with microscope-based identification and counting to experimentally investigate the short-term responses of small eukaryotes (<6 µm; from a coastal Mediterranean lagoon) to a warming treatment (+3°C) and UVB radiation increases (+20%) at two different nutrient levels. Interestingly, the increase in temperature resulted in higher pigmented eukaryotes abundances and in community structure changes clearly illustrated by molecular analyses. For most of the phylogenetic groups, some rearrangements occurred at the OTUs level even when their relative proportion (microscope counting) did not change significantly. Temperature explained almost 20% of the total variance of the small eukaryote community structure (while UVB explained only 8.4%). However, complex cumulative effects were detected. Some antagonistic or non additive effects were detected between temperature and nutrients, especially for Dinophyceae and Cryptophyceae. CONCLUSIONS: This multifactorial experiment highlights the potential impacts, over short time scales, of changing environmental factors on the structure of various functional groups like small primary producers, parasites and saprotrophs which, in response, can modify energy flow in the planktonic food webs.


Assuntos
Biodiversidade , Eucariotos/crescimento & desenvolvimento , Eucariotos/efeitos da radiação , Raios Ultravioleta , DNA Ribossômico/química , DNA Ribossômico/genética , Eucariotos/citologia , Eucariotos/genética , Região do Mediterrâneo , Microscopia , Dados de Sequência Molecular , RNA Ribossômico 18S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Temperatura
17.
Ecotoxicology ; 21(7): 1788-96, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22539116

RESUMO

In the present study, juvenile whitefish weighing 2 g were exposed by force-feeding to two ecologically relevant doses (0.05 and 0.5 µg per fish) of microcystin-LR (MC-LR). Then over 96 h the MC uptake in fish liver and muscle was measured, as the activity of the detoxification enzyme glutathione S-transferase (GST) in the liver, and the genotoxicity impact on red blood cells. Results show that (1) the MC-LR equivalent concentrations increased for both doses and in both organs of whitefish with approximately threefold lower concentrations for the low dose compared to the high dose in both organs and threefold lower concentrations in the muscle compared to the liver for each dose (2) the liver GST activity increased during the first 48 h of exposure with fivefold higher GST activity for the highest dose at 48 h compared to control and (3) MC-LR leads to deoxyribonucleic acid strand breaks that were detected by the comet assay and shown to be partially repaired. This work demonstrates that European whitefish could be impacted by cyanobacteria toxins due to rapid microcystin uptake, especially in the context of chronic contamination, which can occur during long bloom episodes.


Assuntos
Glutationa Transferase/metabolismo , Fígado/enzimologia , Microcistinas/farmacocinética , Músculos/metabolismo , Salmonidae/metabolismo , Animais , Dano ao DNA , Eritrócitos/efeitos dos fármacos , Toxinas Marinhas , Microcistinas/metabolismo , Microcistinas/toxicidade , Testes de Mutagenicidade , Estresse Oxidativo
18.
Mol Ecol Resour ; 22(4): 1440-1453, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-34863036

RESUMO

Fish eDNA metabarcoding is usually performed from filtered water samples. The volume of filtered water depends on the study scope and can rapidly become time consuming according to the number of samples that have to be processed. To avoid time allocated to filtration, passive DNA samplers have been used to recover fish eDNA from marine environments faster. In freshwater ecosystems, aquatic biofilms were used to catch eDNA from macroinvertebrates. Here, we test the capacity of aquatic biofilms to entrap fish eDNA in a large lake and, therefore, the possibility to perform fish eDNA metabarcoding from this matrix compared to the traditional fish eDNA approach from filtered water samples. Methodological aspects of the use of aquatic biofilms for fish eDNA metabarcoding (e.g. PCR replicates, biological replicates, bioinformatics pipeline, reference database and taxonomic assignment) were validated against a mock community. When using biofilms from habitats sheltered from wind and waves, biofilm and water approach provided similar inventories. Richness and diversity were comparable between both approaches. Approaches differed only for rare taxa. Our results illustrate the capacity of aquatic biofilms to act as passive eDNA samplers of fish eDNA and, therefore, the possibility to use biofilms to monitor fish communities efficiently from biofilms. Furthermore, our results open up avenues of research to study a diversity of biological groups (among which bioindicators as diatoms, macroinvertebrates and fish) from eDNA isolated from a single environmental matrix reducing sampling efforts, analysis time and costs.


Assuntos
Código de Barras de DNA Taxonômico , Ecossistema , Animais , Biodiversidade , Biofilmes , Código de Barras de DNA Taxonômico/métodos , Monitoramento Ambiental/métodos , Peixes/genética , Lagos
19.
Sci Rep ; 12(1): 7899, 2022 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-35551223

RESUMO

Ciliates are unicellular heterotrophic organisms that play a key role in aquatic planktonic and benthic food webs. Advances in sedimentary DNA (sed-DNA) analysis offer the possibility to integrate these bioindicators in paleoenvironmental reconstructions. In this study, we used the top-bottom paleolimnological approach and metabarcoding techniques applied to sed-DNA to compare the recent and past (i.e. prior to major anthropogenic impacts) ciliate communities of 48 lakes located along an elevation gradient. Our results show an overall decline in the ß-diversity in recent time, especially in lowland lakes, which are more strongly exposed to local human pressures. Analyses of the functional groups indicate important restructuration of the food web, including the recent increase in mixotrophs. Moreover, changes in the benthic ciliates were consistent with the widespread increase in deep water anoxia. Our results provided evidence that sed-DNA can uncover information about past ciliate communities on a wide variety of lakes. Overall, our study demonstrates the potential of using ciliates as new paleoindicators, integrating information from the pelagic to the benthic zones, and providing valuable insights into ecosystem functioning through a trait-based functional community approach. As paleoindicator, they thus offer a more holistic view on the long-term changes of aquatic ecosystems.


Assuntos
Cilióforos , Lagos , Ecossistema , Cadeia Alimentar , Humanos , Plâncton
20.
PLoS One ; 17(8): e0272660, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35960745

RESUMO

Environmental DNA (eDNA) metabarcoding is revolutionizing the monitoring of aquatic biodiversity. The use of eDNA has the potential to enable non-invasive, cost-effective, time-efficient and high-sensitivity monitoring of fish assemblages. Although the capacity of eDNA metabarcoding to describe fish assemblages is recognised, research efforts are still needed to better assess the spatial and temporal variability of the eDNA signal and to ultimately design an optimal sampling strategy for eDNA monitoring. In this context, we sampled three different lakes (a dam reservoir, a shallow eutrophic lake and a deep oligotrophic lake) every 6 weeks for 1 year. We performed four types of sampling for each lake (integrative sampling of sub-surface water along transects on the left shore, the right shore and above the deepest zone, and point sampling in deeper layers near the lake bottom) to explore the spatial variability of the eDNA signal at the lake scale over a period of 1 year. A metabarcoding approach was applied to analyse the 92 eDNA samples in order to obtain fish species inventories which were compared with traditional fish monitoring methods (standardized gillnet samplings). Several species known to be present in these lakes were only detected by eDNA, confirming the higher sensitivity of this technique in comparison with gillnetting. The eDNA signal varied spatially, with shoreline samples being richer in species than the other samples. Furthermore, deep-water samplings appeared to be non-relevant for regularly mixed lakes, where the eDNA signal was homogeneously distributed. These results also demonstrate a clear temporal variability of the eDNA signal that seems to be related to species phenology, with most of the species detected in spring during the spawning period on shores, but also a peak of detection in winter for salmonid and coregonid species during their reproduction period. These results contribute to our understanding of the spatio-temporal distribution of eDNA in lakes and allow us to provide methodological recommendations regarding where and when to sample eDNA for fish monitoring in lakes.


Assuntos
DNA Ambiental , Lagos , Animais , Biodiversidade , Código de Barras de DNA Taxonômico/métodos , DNA Ambiental/genética , Monitoramento Ambiental/métodos , Peixes/genética , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA