Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Bioinformatics ; 36(7): 2306-2307, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31778155

RESUMO

SUMMARY: PyIOmica is an open-source Python package focusing on integrating longitudinal multiple omics datasets, characterizing and categorizing temporal trends. The package includes multiple bioinformatics tools including data normalization, annotation, categorization, visualization and enrichment analysis for gene ontology terms and pathways. Additionally, the package includes an implementation of visibility graphs to visualize time series as networks. AVAILABILITY AND IMPLEMENTATION: PyIOmica is implemented as a Python package (pyiomica), available for download and installation through the Python Package Index (https://pypi.python.org/pypi/pyiomica), and can be deployed using the Python import function following installation. PyIOmica has been tested on Mac OS X, Unix/Linux and Microsoft Windows. The application is distributed under an MIT license. Source code for each release is also available for download on Zenodo (https://doi.org/10.5281/zenodo.3548040). SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics.


Assuntos
Biologia Computacional , Software , Ontologia Genética
2.
BMC Bioinformatics ; 20(1): 369, 2019 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-31262249

RESUMO

BACKGROUND: Single cell RNA sequencing (scRNA-seq) brings unprecedented opportunities for mapping the heterogeneity of complex cellular environments such as bone marrow, and provides insight into many cellular processes. Single cell RNA-seq has a far larger fraction of missing data reported as zeros (dropouts) than traditional bulk RNA-seq, and unsupervised clustering combined with Principal Component Analysis (PCA) can be used to overcome this limitation. After clustering, however, one has to interpret the average expression of markers on each cluster to identify the corresponding cell types, and this is normally done by hand by an expert curator. RESULTS: We present a computational tool for processing single cell RNA-seq data that uses a voting algorithm to automatically identify cells based on approval votes received by known molecular markers. Using a stochastic procedure that accounts for imbalances in the number of known molecular signatures for different cell types, the method computes the statistical significance of the final approval score and automatically assigns a cell type to clusters without an expert curator. We demonstrate the utility of the tool in the analysis of eight samples of bone marrow from the Human Cell Atlas. The tool provides a systematic identification of cell types in bone marrow based on a list of markers of immune cell types, and incorporates a suite of visualization tools that can be overlaid on a t-SNE representation. The software is freely available as a Python package at https://github.com/sdomanskyi/DigitalCellSorter . CONCLUSIONS: This methodology assures that extensive marker to cell type matching information is taken into account in a systematic way when assigning cell clusters to cell types. Moreover, the method allows for a high throughput processing of multiple scRNA-seq datasets, since it does not involve an expert curator, and it can be applied recursively to obtain cell sub-types. The software is designed to allow the user to substitute the marker to cell type matching information and apply the methodology to different cellular environments.


Assuntos
Células da Medula Óssea/citologia , Perfilação da Expressão Gênica/métodos , Análise de Sequência de RNA/métodos , Software , Algoritmos , Células da Medula Óssea/metabolismo , Análise por Conglomerados , Humanos , Análise de Componente Principal , Análise de Célula Única
3.
Apoptosis ; 22(11): 1336-1343, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-28856570

RESUMO

Apoptosis is essential for numerous processes, such as development, resistance to infections, and suppression of tumorigenesis. Here, we investigate the influence of the nutrient sensing and longevity-assuring enzyme SIRT6 on the dynamics of apoptosis triggered by serum starvation. Specifically, we characterize the progression of apoptosis in wild type and SIRT6 deficient mouse embryonic fibroblasts using time-lapse flow cytometry and computational modelling based on rate-equations and cell distribution analysis. We find that SIRT6 deficient cells resist apoptosis by delaying its initiation. Interestingly, once apoptosis is initiated, the rate of its progression is higher in SIRT6 null cells compared to identically cultured wild type cells. However, SIRT6 null cells succumb to apoptosis more slowly, not only in response to nutrient deprivation but also in response to other stresses. Our data suggest that SIRT6 plays a role in several distinct steps of apoptosis. Overall, we demonstrate the utility of our computational model to describe stages of apoptosis progression and the integrity of the cellular membrane. Such measurements will be useful in a broad range of biological applications.


Assuntos
Apoptose/efeitos dos fármacos , Meios de Cultura Livres de Soro/farmacologia , Fibroblastos/efeitos dos fármacos , Modelos Estatísticos , Sirtuínas/deficiência , Animais , Apoptose/genética , Sobrevivência Celular/efeitos dos fármacos , Simulação por Computador , Embrião de Mamíferos , Etoposídeo/farmacologia , Fibroblastos/citologia , Fibroblastos/metabolismo , Citometria de Fluxo , Regulação da Expressão Gênica , Leupeptinas/farmacologia , Camundongos , Camundongos Knockout , Cultura Primária de Células , Rotenona/farmacologia , Sirtuínas/genética , Imagem com Lapso de Tempo
4.
Chemphyschem ; 18(13): 1773-1781, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28125160

RESUMO

We describe a chemical XOR gate design that realizes gate-response function with filtering properties. Such gate-response function is flat (has small gradients) at and in the vicinity of all the four binary-input logic points, resulting in analog noise suppression. The gate functioning involves cross-reaction of the inputs represented by pairs of chemicals to produce a practically zero output when both are present and nearly equal. This cross-reaction processing step is also designed to result in filtering at low output intensities by canceling out the inputs if one of the latter has low intensity compared with the other. The remaining inputs, which were not reacted away, are processed to produce the output XOR signal by chemical steps that result in filtering at large output signal intensities. We analyze the tradeoff resulting from filtering, which involves loss of signal intensity. We also discuss practical aspects of realizations of such XOR gates.

5.
Chemphyschem ; 18(20): 2908-2915, 2017 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-28745425

RESUMO

We report an experimental realization of a biochemical XOR gate function that avoids many of the pitfalls of earlier realizations based on biocatalytic cascades. Inputs-represented by pairs of chemicals-cross-react to largely cancel out when both are nearly equal. The cross-reaction can be designed to also optimize gate functioning for noise handling. When not equal, the residual inputs are further processed to result in the output of the XOR type, by biocatalytic steps that allow for further gate-function optimization. The quality of the realized XOR gate is theoretically analyzed.


Assuntos
Álcool Desidrogenase/metabolismo , Oxirredutases do Álcool/metabolismo , Biocatálise , Glucose Oxidase/metabolismo , Hexoquinase/metabolismo , NAD/metabolismo , Peroxidase/metabolismo , Armoracia/enzimologia , Aspergillus niger/enzimologia , Modelos Moleculares , Pichia/enzimologia , Saccharomyces cerevisiae/enzimologia
6.
Chemphyschem ; 18(12): 1541-1551, 2017 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-28301717

RESUMO

We study the mechanisms involved in the release, triggered by the application of glucose, of insulin entrapped in Fe3+ -cross-linked alginate hydrogel particles further stabilized with a polyelectrolyte. Platelet-shaped alginate particles are synthesized containing enzyme glucose oxidase conjugated with silica nanoparticles, which are also entrapped in the hydrogel. Glucose diffuses in from solution, and production of hydrogen peroxide is catalyzed by the enzyme within the hydrogel. We argue that, specifically for the Fe3+ -cross-linked systems, the produced hydrogen peroxide is further converted to free radicals via a Fenton-type reaction catalyzed by the iron cations. The activity of free radicals, as well as the reduction of Fe3+ by the enzyme, and other mechanisms contribute to the decrease in density of the hydrogel. As a result, while the particles remain intact, void sizes increase and release of insulin ensues and is followed experimentally. A theoretical description of the involved processes is proposed and utilized to fit the data. It is then used to study the long-time properties of the release process that offers a model for designing new drug-release systems.


Assuntos
Reagentes de Ligações Cruzadas/metabolismo , Compostos Férricos/metabolismo , Glucose Oxidase/metabolismo , Glucose/metabolismo , Hidrogéis/metabolismo , Insulina/metabolismo , Reagentes de Ligações Cruzadas/química , Compostos Férricos/química , Glucose/química , Glucose Oxidase/química , Hidrogéis/química , Insulina/química , Modelos Moleculares , Nanopartículas/química , Nanopartículas/metabolismo , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/metabolismo
7.
Chemphyschem ; 17(7): 976-84, 2016 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-26762598

RESUMO

An analytical model to describe diffusion of oligonucleotides from stable hydrogel beads is developed and experimentally verified. The synthesized alginate beads are Fe(3+) -cross-linked and polyelectrolyte-doped for uniformity and stability at physiological pH. Data on diffusion of oligonucleotides from inside the beads provide physical insights into the volume nature of the immobilization of a fraction of oligonucleotides due to polyelectrolyte cross-linking, that is, the absence of a surface-layer barrier in this case. Furthermore, the results suggest a new simple approach to measuring the diffusion coefficient of mobile oligonucleotide molecules inside hydrogels. The considered alginate beads provide a model for a well-defined component in drug-release systems and for the oligonucleotide-release transduction steps in drug-delivering and biocomputing applications. This is illustrated by destabilizing the beads with citrate, which induces full oligonucleotide release with nondiffusional kinetics.


Assuntos
Alginatos/química , Portadores de Fármacos/química , Oligodesoxirribonucleotídeos/química , Ácido Cítrico , Reagentes de Ligações Cruzadas/química , Difusão , Compostos Férricos/química , Ácido Glucurônico/química , Ácidos Hexurônicos/química , Hidrogéis , Cinética , Modelos Químicos , Poliaminas/química , Polieletrólitos/química
8.
J Chem Phys ; 145(9): 094103, 2016 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-27608985

RESUMO

We develop a theoretical approach that uses physiochemical kinetics modelling to describe cell population dynamics upon progression of viral infection in cell culture, which results in cell apoptosis (programmed cell death) and necrosis (direct cell death). Several model parameters necessary for computer simulation were determined by reviewing and analyzing available published experimental data. By comparing experimental data to computer modelling results, we identify the parameters that are the most sensitive to the measured system properties and allow for the best data fitting. Our model allows extraction of parameters from experimental data and also has predictive power. Using the model we describe interesting time-dependent quantities that were not directly measured in the experiment and identify correlations among the fitted parameter values. Numerical simulation of viral infection progression is done by a rate-equation approach resulting in a system of "stiff" equations, which are solved by using a novel variant of the stochastic ensemble modelling approach. The latter was originally developed for coupled chemical reactions.


Assuntos
Apoptose , Modelos Biológicos , Viroses/patologia , Divisão Celular , Simulação por Computador , Genoma Viral , Vírus da Doença Infecciosa da Bursa/fisiologia , Cinética , Necrose , Probabilidade , Processos Estocásticos , Viroses/virologia , Replicação Viral
9.
Phys Chem Chem Phys ; 17(20): 13215-22, 2015 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-25766671

RESUMO

We develop a theoretical model to explain the long induction interval of water intake that precedes the onset of erosion due to degradation caused by hydrolysis in the recently synthesized and studied cross-linked polyanhydrides. Various kinetic mechanisms are incorporated in the model in an attempt to explain the experimental data for the mass loss profile. Our key finding is that the observed long induction interval is attributable to the nonlinear dependence of the degradation rate constants on the local water concentration, which essentially amounts to the breakdown of the standard rate-equation approach, potential causes for which are then discussed. Our theoretical results offer physical insights into which microscopic studies will be required to supplement the presently available macroscopic mass-loss data in order to fully understand the origin of the observed behavior.


Assuntos
Materiais Biocompatíveis/química , Modelos Químicos , Polianidridos/química , Água/química , Difusão , Hidrólise , Cinética , Peso Molecular , Dinâmica não Linear
10.
Cell Rep Methods ; 4(5): 100759, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38626768

RESUMO

We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole-slide image (WSI), optimized for patient-derived xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genome input and stand-alone image analysis. We show the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of H&E imaging features reveal similar patterns arising from the two data modalities.


Assuntos
Xenoenxertos , Humanos , Animais , Camundongos , Perfilação da Expressão Gênica/métodos , Amarelo de Eosina-(YS) , Hematoxilina , Transcriptoma , Processamento de Imagem Assistida por Computador/métodos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
bioRxiv ; 2024 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-38370717

RESUMO

Resistance of BRAF-mutant melanomas to targeted therapy arises from the ability of cells to enter a persister state, evade treatment with relative dormancy, and repopulate the tumor when reactivated. Using spatial transcriptomics in patient derived xenograft models, we capture clonal lineage evolution during treatment, finding the persister state to show increased oxidative phosphorylation, decreased proliferation, and increased invasive capacity, with central-to-peripheral gradients. Phylogenetic tracing identifies intrinsic- and acquired-resistance mechanisms (e.g. dual specific phosphatases, Reticulon-4, CDK2) and suggests specific temporal windows of potential therapeutic efficacy. Using deep learning to analyze histopathological slides, we find morphological features of specific cell states, demonstrating that juxtaposition of transcriptomics and histology data enables identification of phenotypically-distinct populations using imaging data alone. In summary, we define state change and lineage selection during melanoma treatment with spatiotemporal resolution, elucidating how choice and timing of therapeutic agents will impact the ability to eradicate resistant clones. Statement of Significance: Tumor evolution is accelerated by application of anti-cancer therapy, resulting in clonal expansions leading to dormancy and subsequently resistance, but the dynamics of this process are incompletely understood. Tracking clonal progression during treatment, we identify conserved, global transcriptional changes and local clone-clone and spatial patterns underlying the emergence of resistance.

12.
Bioinform Adv ; 3(1): vbad051, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37113249

RESUMO

Motivation: Drug synergy prediction is approached with machine learning techniques using molecular and pharmacological data. The published Cancer Drug Atlas (CDA) predicts a synergy outcome in cell-line models from drug target information, gene mutations and the models' monotherapy drug sensitivity. We observed low performance of the CDA, 0.339, measured by Pearson correlation of predicted versus measured sensitivity on DrugComb datasets. Results: We augmented the approach CDA by applying a random forest regression and optimization via cross-validation hyper-parameter tuning and named it Augmented CDA (ACDA). We benchmarked the ACDA's performance, which is 68% higher than that of the CDA when trained and validated on the same dataset spanning 10 tissues. We compared the performance of ACDA to one of the winning methods of the DREAM Drug Combination Prediction Challenge, the performance of which was lower than ACDA in 16 out of 19 cases. We further trained the ACDA on Novartis Institutes for BioMedical Research PDX encyclopedia data and generated sensitivity predictions for PDX models. Finally, we developed a novel approach to visualize synergy-prediction data. Availability and implementation: The source code is available at https://github.com/TheJacksonLaboratory/drug-synergy and the software package at PyPI. Supplementary information: Supplementary data are available at Bioinformatics Advances online.

13.
bioRxiv ; 2023 Jul 30.
Artigo em Inglês | MEDLINE | ID: mdl-37546876

RESUMO

Highlights: We have developed an automated data processing pipeline to quantify mouse and human data from patient-derived xenograft samples assayed by Visium spatial transcriptomics with matched hematoxylin and eosin (H&E) stained image. We enable deconvolution of reads with Xenome, quantification of spatial gene expression from host and graft species with Space Ranger, extraction of B-allele frequencies, and splicing quantification with Velocyto. In the H&E image processing sub-workflow, we generate morphometric and deep learning-derived feature quantifications complementary to the Visium spots, enabling multi-modal H&E/expression comparisons. We have wrapped the pipeline into Nextflow DSL2 in a scalable, portable, and easy-to-use framework. Summary: We designed a Nextflow DSL2-based pipeline, Spatial Transcriptomics Quantification (STQ), for simultaneous processing of 10x Genomics Visium spatial transcriptomics data and a matched hematoxylin and eosin (H&E)-stained whole slide image (WSI), optimized for Patient-Derived Xenograft (PDX) cancer specimens. Our pipeline enables the classification of sequenced transcripts for deconvolving the mouse and human species and mapping the transcripts to reference transcriptomes. We align the H&E WSI with the spatial layout of the Visium slide and generate imaging and quantitative morphology features for each Visium spot. The pipeline design enables multiple analysis workflows, including single or dual reference genomes input and stand-alone image analysis. We showed the utility of our pipeline on a dataset from Visium profiling of four melanoma PDX samples. The clustering of Visium spots and clustering of imaging features of H&E data reveal similar patterns arising from the two data modalities.

14.
Sci Rep ; 12(1): 5807, 2022 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-35388065

RESUMO

VEGF inhibitor drugs are part of standard care in oncology and ophthalmology, but not all patients respond to them. Combinations of drugs are likely to be needed for more effective therapies of angiogenesis-related diseases. In this paper we describe naturally occurring combinations of receptors in endothelial cells that might help to understand how cells communicate and to identify targets for drug combinations. We also develop and share a new software tool called DECNEO to identify them. Single-cell gene expression data are used to identify a set of co-expressed endothelial cell receptors, conserved among species (mice and humans) and enriched, within a network, of connections to up-regulated genes. This set includes several receptors previously shown to play a role in angiogenesis. Multiple statistical tests from large datasets, including an independent validation set, support the reproducibility, evolutionary conservation and role in angiogenesis of these naturally occurring combinations of receptors. We also show tissue-specific combinations and, in the case of choroid endothelial cells, consistency with both well-established and recent experimental findings, presented in a separate paper. The results and methods presented here advance the understanding of signaling to endothelial cells. The methods are generally applicable to the decoding of intercellular combinations of signals.


Assuntos
Células Endoteliais , Transcriptoma , Inibidores da Angiogênese/farmacologia , Animais , Células Endoteliais/metabolismo , Humanos , Camundongos , Neovascularização Patológica/metabolismo , Reprodutibilidade dos Testes
15.
EMBO Mol Med ; 14(1): e14511, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-34779136

RESUMO

In the course of our studies aiming to discover vascular bed-specific endothelial cell (EC) mitogens, we identified leukemia inhibitory factor (LIF) as a mitogen for bovine choroidal EC (BCE), although LIF has been mainly characterized as an EC growth inhibitor and an anti-angiogenic molecule. LIF stimulated growth of BCE while it inhibited, as previously reported, bovine aortic EC (BAE) growth. The JAK-STAT3 pathway mediated LIF actions in both BCE and BAE cells, but a caspase-independent proapoptotic signal mediated by cathepsins was triggered in BAE but not in BCE. LIF administration directly promoted activation of STAT3 and increased blood vessel density in mouse eyes. LIF also had protective effects on the choriocapillaris in a model of oxidative retinal injury. Analysis of available single-cell transcriptomic datasets shows strong expression of the specific LIF receptor in mouse and human choroidal EC. Our data suggest that LIF administration may be an innovative approach to prevent atrophy associated with AMD, through protection of the choriocapillaris.


Assuntos
Atrofia Geográfica , Fator Inibidor de Leucemia , Mitógenos , Animais , Corioide/irrigação sanguínea , Corioide/metabolismo , Células Endoteliais/metabolismo , Atrofia Geográfica/metabolismo , Janus Quinases/metabolismo , Fator Inibidor de Leucemia/metabolismo , Fator Inibidor de Leucemia/farmacologia , Camundongos , Mitógenos/metabolismo , Mitógenos/farmacologia , Fator de Transcrição STAT3/metabolismo
16.
Cancer Res ; 82(22): 4126-4138, 2022 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-36069866

RESUMO

Patient-derived xenograft (PDX) models are an effective preclinical in vivo platform for testing the efficacy of novel drugs and drug combinations for cancer therapeutics. Here we describe a repository of 79 genomically and clinically annotated lung cancer PDXs available from The Jackson Laboratory that have been extensively characterized for histopathologic features, mutational profiles, gene expression, and copy-number aberrations. Most of the PDXs are models of non-small cell lung cancer (NSCLC), including 37 lung adenocarcinoma (LUAD) and 33 lung squamous cell carcinoma (LUSC) models. Other lung cancer models in the repository include four small cell carcinomas, two large cell neuroendocrine carcinomas, two adenosquamous carcinomas, and one pleomorphic carcinoma. Models with both de novo and acquired resistance to targeted therapies with tyrosine kinase inhibitors are available in the collection. The genomic profiles of the LUAD and LUSC PDX models are consistent with those observed in patient tumors from The Cancer Genome Atlas and previously characterized gene expression-based molecular subtypes. Clinically relevant mutations identified in the original patient tumors were confirmed in engrafted PDX tumors. Treatment studies performed in a subset of the models recapitulated the responses expected on the basis of the observed genomic profiles. These models therefore serve as a valuable preclinical platform for translational cancer research. SIGNIFICANCE: Patient-derived xenografts of lung cancer retain key features observed in the originating patient tumors and show expected responses to treatment with standard-of-care agents, providing experimentally tractable and reproducible models for preclinical investigations.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Xenoenxertos , Ensaios Antitumorais Modelo de Xenoenxerto , Adenocarcinoma de Pulmão/tratamento farmacológico , Adenocarcinoma de Pulmão/genética , Modelos Animais de Doenças
17.
Sci Rep ; 11(1): 5623, 2021 03 11.
Artigo em Inglês | MEDLINE | ID: mdl-33707481

RESUMO

Temporal behavior is an essential aspect of all biological systems. Time series have been previously represented as networks. Such representations must address two fundamental problems on how to: (1) Create appropriate networks to reflect the characteristics of biological time series. (2) Detect characteristic dynamic patterns or events as network temporal communities. General community detection methods use metrics comparing the connectivity within a community to random models, or are based on the betweenness centrality of edges or nodes. However, such methods were not designed for network representations of time series. We introduce a visibility-graph-based method to build networks from time series and detect temporal communities within these networks. To characterize unevenly sampled time series (typical of biological experiments), and simultaneously capture events associated to peaks and troughs, we introduce the Weighted Dual-Perspective Visibility Graph (WDPVG). To detect temporal communities in individual signals, we first find the shortest path of the network between start and end nodes, identifying high intensity nodes as the main stem of our community detection algorithm that act as hubs for each community. Then, we aggregate nodes outside the shortest path to the closest nodes found on the main stem based on the closest path length, thereby assigning every node to a temporal community based on proximity to the stem nodes/hubs. We demonstrate the validity and effectiveness of our method through simulation and biological applications.


Assuntos
Algoritmos , Características de Residência , Simulação por Computador , Bases de Dados como Assunto , Humanos , Fatores de Tempo
18.
PeerJ ; 9: e10670, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33520459

RESUMO

MOTIVATION: Analysis of singe cell RNA sequencing (scRNA-seq) typically consists of different steps including quality control, batch correction, clustering, cell identification and characterization, and visualization. The amount of scRNA-seq data is growing extremely fast, and novel algorithmic approaches improving these steps are key to extract more biological information. Here, we introduce: (i) two methods for automatic cell type identification (i.e., without expert curator) based on a voting algorithm and a Hopfield classifier, (ii) a method for cell anomaly quantification based on isolation forest, and (iii) a tool for the visualization of cell phenotypic landscapes based on Hopfield energy-like functions. These new approaches are integrated in a software platform that includes many other state-of-the-art methodologies and provides a self-contained toolkit for scRNA-seq analysis. RESULTS: We present a suite of software elements for the analysis of scRNA-seq data. This Python-based open source software, Digital Cell Sorter (DCS), consists in an extensive toolkit of methods for scRNA-seq analysis. We illustrate the capability of the software using data from large datasets of peripheral blood mononuclear cells (PBMC), as well as plasma cells of bone marrow samples from healthy donors and multiple myeloma patients. We test the novel algorithms by evaluating their ability to deconvolve cell mixtures and detect small numbers of anomalous cells in PBMC data. AVAILABILITY: The DCS toolkit is available for download and installation through the Python Package Index (PyPI). The software can be deployed using the Python import function following installation. Source code is also available for download on Zenodo: DOI 10.5281/zenodo.2533377. SUPPLEMENTARY INFORMATION: Supplemental Materials are available at PeerJ online.

19.
Sci Rep ; 11(1): 710, 2021 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-33436912

RESUMO

Saliva omics has immense potential for non-invasive diagnostics, including monitoring very young or elderly populations, or individuals in remote locations. In this study, multiple saliva omics from an individual were monitored over three periods (100 timepoints) involving: (1) hourly sampling over 24 h without intervention, (2) hourly sampling over 24 h including immune system activation using the standard 23-valent pneumococcal polysaccharide vaccine, (3) daily sampling for 33 days profiling the post-vaccination response. At each timepoint total saliva transcriptome and proteome, and small RNA from salivary extracellular vesicles were profiled, including mRNA, miRNA, piRNA and bacterial RNA. The two 24-h periods were used in a paired analysis to remove daily variation and reveal vaccination responses. Over 18,000 omics longitudinal series had statistically significant temporal trends compared to a healthy baseline. Various immune response and regulation pathways were activated following vaccination, including interferon and cytokine signaling, and MHC antigen presentation. Immune response timeframes were concordant with innate and adaptive immunity development, and coincided with vaccination and reported fever. Overall, mRNA results appeared more specific and sensitive (timewise) to vaccination compared to other omics. The results suggest saliva omics can be consistently assessed for non-invasive personalized monitoring and immune response diagnostics.


Assuntos
Infecções Pneumocócicas/imunologia , Vacinas Pneumocócicas/administração & dosagem , Proteoma/efeitos dos fármacos , Saliva/metabolismo , Sinusite/imunologia , Streptococcus pneumoniae/imunologia , Transcriptoma/efeitos dos fármacos , Adulto , Humanos , Imunidade , Estudos Longitudinais , Masculino , Infecções Pneumocócicas/tratamento farmacológico , Infecções Pneumocócicas/microbiologia , Saliva/efeitos dos fármacos , Sinusite/tratamento farmacológico , Sinusite/microbiologia , Fatores de Tempo , Vacinação
20.
Artigo em Inglês | MEDLINE | ID: mdl-35574240

RESUMO

Associative memories in Hopfield's neural networks are mapped to gene expression pattern to model different paths of disease progression towards Multiple Myeloma (MM). The model is built using single cell RNA-seq data from bone marrow aspirates of MM patients as well as patients diagnosed with Monoclonal Gammopathy of Undetermined Significance (MGUS) and Smoldering Multiple Myeloma (SMM), two medical conditions that often progress to full MM. Results: We identify different clusters of MGUS, SMM, and MM cells, map them to Hopfield associative memory patterns, and model the dynamics of transition between the different patterns. The model is then used to identify genes that are differentialy expressed across different MM stages and whose simultaneous inhibition is associated to a delayed disease progression.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA