Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Chem Theory Comput ; 20(11): 4427-4455, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38815171

RESUMO

Confinement can substantially alter the physicochemical properties of materials by breaking translational isotropy and rendering all physical properties position-dependent. Molecular dynamics (MD) simulations have proven instrumental in characterizing such spatial heterogeneities and probing the impact of confinement on materials' properties. For static properties, this is a straightforward task and can be achieved via simple spatial binning. Such an approach, however, cannot be readily applied to transport coefficients due to lack of natural extensions of autocorrelations used for their calculation in the bulk. The prime example of this challenge is diffusivity, which, in the bulk, can be readily estimated from the particles' mobility statistics, which satisfy the Fokker-Planck equation. Under confinement, however, such statistics will follow the Smoluchowski equation, which lacks a closed-form analytical solution. This brief review explores the rich history of estimating profiles of the diffusivity tensor from MD simulations and discusses various approximate methods and algorithms developed for this purpose. Besides discussing heuristic extensions of bulk methods, we overview more rigorous algorithms, including kernel-based methods, Bayesian approaches, and operator discretization techniques. Additionally, we outline methods based on applying biasing potentials or imposing constraints on tracer particles. Finally, we discuss approaches that estimate diffusivity from mean first passage time or committor probability profiles, a conceptual framework originally developed in the context of collective variable spaces describing rare events in computational chemistry and biology. In summary, this paper offers a concise survey of diverse approaches for estimating diffusivity from MD trajectories, highlighting challenges and opportunities in this area.

2.
J Phys Chem Lett ; 15(5): 1279-1287, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38284350

RESUMO

Heterogeneous crystal nucleation is the dominant mechanism of crystallization in most systems, yet its underlying physics remains an enigma. While emergent interfacial crystalline order precedes heterogeneous nucleation, its importance in the nucleation mechanism is unclear. Here, we use path sampling simulations of two model systems to demonstrate that crystalline order in its traditional sense is not predictive of the outcome of the heterogeneous nucleation of close-packed crystals. Consequently, structure-based collective variables (CVs) that reliably describe homogeneous nucleation can be poor descriptors of heterogeneous nucleation. This divergence between structure and nucleation outcome is accompanied by an intriguing dynamical anomaly, wherein low-coordinated crystalline particles outpace their liquid-like counterparts. We use committor analysis, high-throughput screening, and machine learning to devise CV optimization strategies and present suitable structural heuristics within the metastable fluid for CV prescreening. Employing such optimized CVs is pivotal for properly characterizing the mechanism of heterogeneous nucleation in metallic and colloidal systems.

3.
J Phys Chem B ; 128(20): 4931-4942, 2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38685567

RESUMO

Human γD-crystallin belongs to a crucial family of proteins known as crystallins located in the fiber cells of the human lens. Since crystallins do not undergo any turnover after birth, they need to possess remarkable thermodynamic stability. However, their sporadic misfolding and aggregation, triggered by environmental perturbations or genetic mutations, constitute the molecular basis of cataracts, which is the primary cause of blindness in the globe according to the World Health Organization. Here, we investigate the impact of high pressure on the conformational landscape of wild-type HγD-crystallin using replica exchange molecular dynamics simulations augmented with principal component analysis. We find pressure to have a modest impact on global measures of protein stability, such as root-mean-square displacement and radius of gyration. Upon projecting our trajectories along the first two principal components from principal component analysis, however, we observe the emergence of distinct free energy basins at high pressures. By screening local order parameters previously shown or hypothesized as markers of HγD-crystallin stability, we establish correlations between a tyrosine-tyrosine aromatic contact within the N-terminal domain and the protein's end-to-end distance with projections along the first and second principal components, respectively. Furthermore, we observe the simultaneous contraction of the hydrophobic core and its intrusion by water molecules. This exploration sheds light on the intricate responses of HγD-crystallin to elevated pressures, offering insights into potential mechanisms underlying its stability and susceptibility to environmental perturbations, crucial for understanding cataract formation.


Assuntos
Simulação de Dinâmica Molecular , Pressão , gama-Cristalinas , Humanos , gama-Cristalinas/química , gama-Cristalinas/metabolismo , Análise de Componente Principal , Conformação Proteica , Termodinâmica , Estabilidade Proteica
4.
J Phys Chem B ; 127(40): 8644-8659, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37757480

RESUMO

Confinement breaks translational and rotational symmetry in materials and makes all physical properties functions of position. Such spatial variations are key to modulating material properties at the nanoscale, and characterizing them accurately is therefore an intense area of research in the molecular simulations community. This is relatively easy to accomplish for basic mechanical observables. Determining spatial profiles of transport properties, such as diffusivity, is, however, much more challenging, as it requires calculating position-dependent autocorrelations of mechanical observables. In our previous paper (Domingues, T.S.; Coifman, R.; Haji-Akbari, A. J. Phys. Chem. B 2023, 127, 5273 10.1021/acs.jpcb.3c00670), we analytically derive and numerically validate a set of filtered covariance estimators (FCEs) for quantifying spatial variations of the diffusivity tensor from stochastic trajectories. In this work, we adapt these estimators to extract diffusivity profiles from MD trajectories and validate them by applying them to a Lennard-Jones fluid within a slit pore. We find our MD-adapted estimator to exhibit the same qualitative features as its stochastic counterpart, as it accurately estimates the lateral diffusivity across the pore while systematically underestimating the normal diffusivity close to hard boundaries. We introduce a conceptually simple and numerically efficient correction scheme based on simulated annealing and diffusion maps to resolve the latter artifact and obtain normal diffusivity profiles that are consistent with the self-part of the van Hove correlation functions. Our findings demonstrate the potential of this MD-adapted estimator in accurately characterizing spatial variations of diffusivity in confined materials.

5.
J Phys Chem B ; 127(23): 5273-5287, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37261948

RESUMO

Materials under confinement can possess properties that deviate considerably from their bulk counterparts. Indeed, confinement makes all physical properties position-dependent and possibly anisotropic, and characterizing such spatial variations and directionality has been an intense area of focus in experimental and computational studies of confined matter. While this task is fairly straightforward for simple mechanical observables, it is far more daunting for transport properties such as diffusivity that can only be estimated from autocorrelations of mechanical observables. For instance, there are well established methods for estimating diffusivity from experimentally observed or computationally generated trajectories in bulk systems. No rigorous generalizations of such methods, however, exist for confined systems. In this work, we present two filtered covariance estimators for computing anisotropic and position-dependent diffusivity tensors and validate them by applying them to stochastic trajectories generated according to known diffusivity profiles. These estimators can accurately capture spatial variations that span over several orders of magnitude and that assume different functional forms. Our kernel-based approach is also very robust to implementation details such as the localization function and time discretization and performs significantly better than estimators that are solely based on local covariance. Moreover, the kernel function does not have to be localized and can instead belong to a dictionary of orthogonal functions. Therefore, the proposed estimator can be readily used to obtain functional estimates of diffusivity rather than a tabulated collection of pointwise estimates. Nonetheless, the susceptibility of the proposed estimators to time discretization is higher at the immediate vicinity of hard boundaries. We demonstrate this heightened susceptibility to be common among all covariance-based estimators.

6.
J Chem Theory Comput ; 18(12): 7142-7154, 2022 Dec 13.
Artigo em Inglês | MEDLINE | ID: mdl-36327152

RESUMO

Modulating ion transport through nanoporous membranes is critical to many important chemical and biological separation processes. The corresponding transport timescales, however, are often too long to capture accurately using conventional molecular dynamics (MD). Recently, path sampling techniques, such as forward-flux sampling (FFS), have emerged as attractive alternatives for efficiently and accurately estimating arbitrarily long ionic passage times. Here, we use non-equilibrium MD and FFS to explore how the kinetics and mechanisms of pressure-driven chloride transport through a nanoporous graphitic membrane are affected by its lateral dimensions. We not only find ionic passage times and free energy barriers to decrease dramatically upon increasing the membrane surface area but also observe an abrupt and discontinuous change in the locus of the transition state. These strong finite size effects arise due to the cumulative effect of the periodic images of the leading ion entering the pore on the distribution of the induced excess charge at the membrane surface in the feed. By assuming that the feed is an ideal conductor, we analytically derive a finite size correction term that can be computed from the information obtained from a single simulation and successfully use it to obtain corrected free energy profiles with no dependence on the system size. We then estimate ionic passage times in the thermodynamic limit by assuming an Eyring-type dependence of rates on barriers with a size-independent prefactor. This approach constitutes a universal framework for removing finite size artifacts in molecular simulations of ion transport through nanoporous membranes and biological channel proteins.


Assuntos
Canais Iônicos , Simulação de Dinâmica Molecular , Transporte de Íons , Cinética , Termodinâmica , Canais Iônicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA