RESUMO
BACKGROUND: Asialoglycoprotein receptor 1 (ASGR1), primarily expressed on hepatocytes, promotes the clearance and the degradation of glycoproteins, including lipoproteins, from the circulation. In humans, loss-of-function variants of ASGR1 are associated with a favorable metabolic profile and reduced incidence of cardiovascular diseases. The molecular mechanisms by which ASGR1 could affect the onset of metabolic syndrome and obesity are unclear. Therefore, here we investigated the contribution of ASGR1 in the development of metabolic syndrome and obesity. METHODS: ASGR1 deficient mice (ASGR1-/-) were subjected to a high-fat diet (45% Kcal from fat) for 20 weeks. The systemic metabolic profile, hepatic and visceral adipose tissue were characterized for metabolic and structural alterations, as well as for immune cells infiltration. RESULTS: ASGR1-/- mice present a hypertrophic adipose tissue with 41% increase in fat accumulation in visceral adipose tissue (VAT), alongside with alteration in lipid metabolic pathways. Intriguingly, ASGR1-/- mice exhibit a comparable response to an acute glucose and insulin challenge in circulation, coupled with notably decreased in circulating cholesterol levels. Although the liver of ASGR1-/- have similar lipid accumulation to the WT mice, they present elevated levels of liver inflammation and a decrease in mitochondrial function. CONCLUSION: ASGR1 deficiency impacts energetic homeostasis during obesity leading to improved plasma lipid levels but increased VAT lipid accumulation and liver damage.
Assuntos
Receptor de Asialoglicoproteína , Síndrome Metabólica , Animais , Humanos , Camundongos , Tecido Adiposo/metabolismo , Receptor de Asialoglicoproteína/genética , Dieta Hiperlipídica , Inflamação/metabolismo , Lipídeos , Fígado/metabolismo , Síndrome Metabólica/complicações , Camundongos Endogâmicos C57BL , Obesidade/complicaçõesRESUMO
Matrix-bound nanovesicles (MBVs) are a recently discovered type of extracellular vesicles (EVs), and they are characterised by a strong adhesion to extracellular matrix structural proteins (ECM) and ECM-derived biomaterials. MBVs contain a highly bioactive and tissue-specific cargo that recapitulates the biological activity of the source ECM. The rich content of MBVs has shown to be capable of potent cell signalling and of modulating the immune system, thus the raising interest for their application in regenerative medicine. Given the tissue-specificity and the youthfulness of research on MBVs, until now they have only been isolated from a few ECM sources. Therefore, the objective of this research was to isolate and identify the presence of MBVs in decellularised bovine pericardium ECM and to characterise their protein content, which is expected to play a major role in their biological potential. The results showed that nanovesicles, corresponding to the definition of recently described MBVs, could be isolated from decellularised bovine pericardium ECM. Moreover, these MBVs were composed of numerous proteins and cytokines, thus preserving a highly potential biological effect. Overall, this research shows that bovine pericardium MBVs show a rich and tissue-specific biological potential.
Assuntos
Materiais Biocompatíveis , Medicina Regenerativa , Bovinos , Animais , Citocinas , Proteínas da Matriz Extracelular , PericárdioRESUMO
BACKGROUND: HDL (high-density lipoprotein) and its major protein component, apoA-I (apolipoprotein A-I), play a unique role in cholesterol homeostasis and immunity. ApoA-I deficiency in hyperlipidemic, atheroprone mice was shown to drive cholesterol accumulation and inflammatory cell activation/proliferation. The present study was aimed at investigating the impact of apoA-I deficiency on lipid deposition and local/systemic inflammation in normolipidemic conditions. METHODS: ApoE deficient mice, apoE/apoA-I double deficient (DKO) mice, DKO mice overexpressing human apoA-I, and C57Bl/6J control mice were fed normal laboratory diet until 30 weeks of age. Plasma lipids were quantified, atherosclerosis development at the aortic sinus and coronary arteries was measured, skin ultrastructure was evaluated by electron microscopy. Blood and lymphoid organs were characterized through histological, immunocytofluorimetric, and whole transcriptome analyses. RESULTS: DKO were characterized by almost complete HDL deficiency and by plasma total cholesterol levels comparable to control mice. Only DKO showed xanthoma formation and severe inflammation in the skin-draining lymph nodes, whose transcriptome analysis revealed a dramatic impairment in energy metabolism and fatty acid oxidation pathways. An increased presence of CD4+ T effector memory cells was detected in blood, spleen, and skin-draining lymph nodes of DKO. A worsening of atherosclerosis at the aortic sinus and coronary arteries was also observed in DKO versus apoE deficient. Human apoA-I overexpression in the DKO background was able to rescue the skin phenotype and halt atherosclerosis development. CONCLUSIONS: HDL deficiency, in the absence of hyperlipidemia, is associated with severe alterations of skin morphology, aortic and coronary atherosclerosis, local and systemic inflammation.
Assuntos
Aterosclerose , Doença da Artéria Coronariana , Hiperlipidemias , Xantomatose , Animais , Apolipoproteína A-I , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Colesterol/metabolismo , Doença da Artéria Coronariana/complicações , Doença da Artéria Coronariana/genética , Hiperlipidemias/complicações , Hiperlipidemias/genética , Inflamação/complicações , Inflamação/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos KnockoutRESUMO
Human epidermis responds to ultraviolet (UV)B-induced damage by tolerating it, restoring it, or undergoing programmed cell death when the damage is massive. Recently, compounds rich in polyphenols, such as Vitis vinifera L. leaf extract (VVLe), have attracted a lot of interest for skin protection. We investigated the effect of VVLe pre-treatment (1 h) in a 2D model of HaCaT cells and in 3D organotypic cultures of normal human skin exposed to a single UVB dose to study the immediate specific events 1 h and the response orchestrated in the epidermal layer 24 h after irradiation, respectively. In both models, transmission electron microscopy analysis was carried out. The expression of the inducible keratin K17, the activation of both pSTAT3 and Nuclear Factor (NF)-κB signalling pathways, and the epidermal distribution of Toll-Like Receptor (TLR) 4 were assessed by immunofluorescence in the 2D and 3D model. In 3D organotypic cultures, thanks to the preservation of a multi-layered structure, the epidermal distribution of the differentiation biomarkers K10 and K14 as well as of K16 was analysed by immunofluorescence, while the release of interleukin (IL)-8 was evaluated by ELISA. In skin bioptic fragments, cytotoxicity and genotoxicity were investigated by LDH assay and Alkaline Comet assay, respectively, and then compared to cell proliferation. The epidermal distribution of the histone γ-H2AX, indicating the fragmented DNA, was analysed by immunofluorescence. In both experimental models, VVLe tuned UVB-induced K17 expression to a different extent in HaCaT cells and in the skin. In HaCaT cells, pSTAT3 activation was induced by UVB and reverted by VVLe pre-treatment. TLR4 expression was triggered by UVB in both models, but VVLe pre-treatment abolished this event only in HaCaT cells. NF-κB immunostaining increased both in the nucleus and in the cytoplasm only in HaCaT cells after UVB irradiation. In all irradiated skin samples, VVLe pre-treatment was not able to revert the inhibition of epidermal proliferation, K16 expression, and IL-8 secretion. The effectiveness of VVLe in contrasting the irradiation-induced genotoxicity still remains unclear. In conclusion, our study clearly shows that K17 is a robust marker induced in keratinocytes upon UVB stimulation and that this event can be reverted by a pre-treatment with VVLe. On the whole, these observations represent a novelty in the scenario of the complex relationships between the effects exerted by UVB rays on human skin and significantly improve the knowledge regarding the modulation of the early epidermal response induced by a single exposure to UVB in the presence of VVLe.
Assuntos
Receptor 4 Toll-Like , Vitis , Biomarcadores , Epiderme , Histonas , Humanos , Interleucina-8 , Queratina-17 , NF-kappa B , Extratos Vegetais/farmacologia , Vitis/químicaRESUMO
Twenty years after the cloning, characterization, and identification of interleukin (IL)-22 in 2000, the precise biological role of this cytokine in healthy and unhealthy skin is not completely known. The aim of this review is to provide an overview on the recent knowledge available in literature about the origin, sources, targets, molecular mechanism of action, and clinical issues regarding IL-22. Last but not least, recent experimental evidence obtained in a 3D model of organotypic culture of normal human skin highlights its homeostatic role and will be discussed in detail, as personal observations. As most of the data concerning IL-22 immunomodulating activity are obtained from mouse models, this work offers a new perspective on its clinical role. The hypothesis herein advanced is that IL-22 profoundly affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed.
Assuntos
Epiderme/fisiologia , Interleucinas/fisiologia , Dermatopatias , Animais , Homeostase , Humanos , Queratinócitos , Camundongos , Psoríase , Pele , Dermatopatias/fisiopatologia , Interleucina 22RESUMO
AIMS: PCSK9 is secreted into the circulation, mainly by the liver, and interacts with low-density lipoprotein receptor (LDLR) homologous and non-homologous receptors, including CD36, thus favouring their intracellular degradation. As PCSK9 deficiency increases the expression of lipids and lipoprotein receptors, thus contributing to cellular lipid accumulation, we investigated whether this could affect heart metabolism and function. METHODS AND RESULTS: Wild-type (WT), Pcsk9 KO, Liver conditional Pcsk9 KO and Pcsk9/Ldlr double KO male mice were fed for 20 weeks with a standard fat diet and then exercise resistance, muscle strength, and heart characteristics were evaluated. Pcsk9 KO presented reduced running resistance coupled to echocardiographic abnormalities suggestive of heart failure with preserved ejection fraction (HFpEF). Heart mitochondrial activity, following maximal coupled and uncoupled respiration, was reduced in Pcsk9 KO mice compared to WT mice and was coupled to major changes in cardiac metabolism together with increased expression of LDLR and CD36 and with lipid accumulation. A similar phenotype was observed in Pcsk9/Ldlr DKO, thus excluding a contribution for LDLR to cardiac impairment observed in Pcsk9 KO mice. Heart function profiling of the liver selective Pcsk9 KO model further excluded the involvement of circulating PCSK9 in the development of HFpEF, pointing to a possible role locally produced PCSK9. Concordantly, carriers of the R46L loss-of-function variant for PCSK9 presented increased left ventricular mass but similar ejection fraction compared to matched control subjects. CONCLUSION: PCSK9 deficiency impacts cardiac lipid metabolism in an LDLR independent manner and contributes to the development of HFpEF.
Assuntos
Insuficiência Cardíaca , Pró-Proteína Convertase 9 , Animais , Insuficiência Cardíaca/genética , Masculino , Camundongos , Camundongos Knockout , Pró-Proteína Convertase 9/genética , Receptores de LDL/genética , Volume SistólicoRESUMO
Spinocerebellar ataxia 28 is an autosomal dominant neurodegenerative disorder caused by missense mutations affecting the proteolytic domain of AFG3L2, a major component of the mitochondrial m-AAA protease. However, little is known of the underlying pathogenetic mechanisms or how to treat patients with SCA28. Currently available Afg3l2 mutant mice harbour deletions that lead to severe, early-onset neurological phenotypes that do not faithfully reproduce the late-onset and slowly progressing SCA28 phenotype. Here we describe production and detailed analysis of a new knock-in murine model harbouring an Afg3l2 allele carrying the p.Met665Arg patient-derived mutation. Heterozygous mutant mice developed normally but adult mice showed signs of cerebellar ataxia detectable by beam test. Although cerebellar pathology was negative, electrophysiological analysis showed a trend towards increased spontaneous firing in Purkinje cells from heterozygous mutants with respect to wild-type controls. As homozygous mutants died perinatally with evidence of cardiac atrophy, for each genotype we generated mouse embryonic fibroblasts (MEFs) to investigate mitochondrial function. MEFs from mutant mice showed altered mitochondrial bioenergetics, with decreased basal oxygen consumption rate, ATP synthesis and mitochondrial membrane potential. Mitochondrial network formation and morphology was altered, with greatly reduced expression of fusogenic Opa1 isoforms. Mitochondrial alterations were also detected in cerebella of 18-month-old heterozygous mutants and may be a hallmark of disease. Pharmacological inhibition of de novo mitochondrial protein translation with chloramphenicol caused reversal of mitochondrial morphology in homozygous mutant MEFs, supporting the relevance of mitochondrial proteotoxicity for SCA28 pathogenesis and therapy development.
Assuntos
Proteases Dependentes de ATP/genética , ATPases Associadas a Diversas Atividades Celulares/genética , Modelos Animais de Doenças , Mitocôndrias/metabolismo , Ataxias Espinocerebelares/congênito , Animais , Feminino , Técnicas de Introdução de Genes , Potencial da Membrana Mitocondrial , Camundongos Endogâmicos C57BL , Proteínas Mitocondriais/metabolismo , Mutação de Sentido Incorreto , Células de Purkinje/fisiologia , Células de Purkinje/ultraestrutura , Ataxias Espinocerebelares/genética , Ataxias Espinocerebelares/metabolismo , Ataxias Espinocerebelares/patologiaRESUMO
Keratinocytes (KCs) and Langerhans cells (LCs) contribute to create the epidermal barrier. To form a functional epidermis, KCs express filaggrin and Toll-like Receptors (TLRs). LCs are the first line of epidermal defence and can be activated by interleukin (IL)-17 and Tumor Necrosis Factor (TNF)-alpha. In psoriasis, an alteration of TLR expression, a defective expression of filaggrin, and LC activation occur. In organotypic cultures of human skin we investigated the interplay between IL-17 and TNF-alpha on i) expression of filaggrin, TLR2, 7 and 9, and Nuclear Factor (NF)-kB localization by immunofluorescence and ii) LC ultrastructural features by transmission electron microscopy. Normal human skin was obtained after aesthetic surgery (n=7), overnight incubated in a Transwell system, and exposed to TNF-alpha and/or IL-17 for 24 (T24), 48 (T48), and 72 (T72) hours. Cytokines always influenced the expression of filaggrin. TNF-alpha alone activated LCs only starting from T48. TLR2 and TLR7 expressions were affected at T24 by IL-17 and the combination of cytokines, but not by TNF-alpha. TLR9-positive cells were detectable in the granular layer after cytokine exposure. A nuclear localization of NF-kB was always observed after cytokine incubation. In conclusion, each cytokine possess an intrinsic activity on the different components of the epidermal barrier.
Assuntos
Técnicas de Cultura de Células/métodos , Microambiente Celular/fisiologia , Epiderme/fisiologia , Queratinócitos/fisiologia , Psoríase/patologia , Estudos de Casos e Controles , Células Cultivadas , Epiderme/ultraestrutura , Feminino , Proteínas Filagrinas , Regulação da Expressão Gênica , Humanos , Proteínas de Filamentos Intermediários/genética , Proteínas de Filamentos Intermediários/metabolismo , Queratinócitos/ultraestrutura , Psoríase/genética , Receptores Toll-Like/genética , Receptores Toll-Like/metabolismoRESUMO
Interleukin (IL)-22 is a pro-inflammatory cytokine driving the progression of the psoriatic lesion with other cytokines, as Tumor Necrosis Factor (TNF)-alpha and IL-17. Our study was aimed at evaluating the early effect of IL-22 alone or in combination with TNF-alpha and IL-17 by immunofluorescence on i) keratinocyte (KC) proliferation, ii) terminal differentiation biomarkers as keratin (K) 10 and 17 expression, iii) intercellular junctions. Transmission electron microscopy (TEM) analysis was performed. A model of human skin culture reproducing a psoriatic microenvironment was used. Plastic surgery explants were obtained from healthy young women (n=7) after informed consent. Fragments were divided before adding IL-22 or a combination of the three cytokines, and harvested 24 (T24), 48 (T48), and 72 (T72)h later. From T24, in IL-22 samples we detected a progressive decrease in K10 immunostaining in the spinous layer paralleled by K17 induction. By TEM, after IL-22 incubation, keratin aggregates were evident in the perinuclear area. Occludin immunostaining was not homogeneously distributed. Conversely, KC proliferation was not inhibited by IL-22 alone, but only by the combination of cytokines. Our results suggest that IL-22 affects keratinocyte terminal differentiation, whereas, in order to induce a proliferation impairment, a more complex psoriatic-like microenvironment is needed.
Assuntos
Diferenciação Celular/efeitos dos fármacos , Interleucinas/farmacologia , Queratinócitos/citologia , Modelos Biológicos , Pele/citologia , Adulto , Biomarcadores/metabolismo , Adesão Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Epiderme/efeitos dos fármacos , Epiderme/metabolismo , Feminino , Imunofluorescência , Humanos , Queratinócitos/efeitos dos fármacos , Queratinócitos/ultraestrutura , Adulto Jovem , Interleucina 22RESUMO
Ultraviolet (UV) radiation is the major environmental factor affecting functions of the skin. Compounds rich in polyphenols, such as Thymus vulgaris leaf extract and thymol, have been proposed for the prevention of UV-induced skin damage. We compared the acute effects induced by UVA and UVB rays on epidermal morphology and proliferation, cytotoxicity, and genotoxicity. Normal human skin explants were obtained from young healthy women (n = 7) after informed consent and cultured at the air-liquid interface overnight. After 24 h, the samples were divided in 2 groups: the former exposed to UVA (16 or 24 J/cm2) and the latter irradiated with UVB (0.24 or 0.72 J/cm2). One hour after the end of irradiation, supernatants were collected for evaluation of the lactate dehydrogenase activity. Twenty-four hours after UVB exposure, biopsies were processed for light and transmission electron microscopy analysis, proliferation, cytotoxicity, and genotoxicity. UVB and UVA rays induced early inhibition of cell proliferation and DNA damage compared to controls. In particular, UVB rays were always more cytotoxic and genotoxic than UVA ones. For this reason, we evaluated the effect of either T. vulgaris L. extract (1.82 µg/ml) or thymol (1 µg/ml) on all samples treated for 1 h before UVB irradiation. While Thymus had a protective action for all of the endpoints evaluated, the action of the extract was less pronounced on epidermal proliferation and morphological features. The results presented in this study could be the basis for investigating the mechanism of thymol and T. vulgaris L. extract against the damage induced by UV radiation.
Assuntos
Anti-Infecciosos/farmacologia , Extratos Vegetais/farmacologia , Protetores contra Radiação/farmacologia , Pele/efeitos dos fármacos , Pele/efeitos da radiação , Timol/farmacologia , Thymus (Planta)/química , Adulto , Anti-Infecciosos/química , Proliferação de Células/efeitos dos fármacos , Proliferação de Células/efeitos da radiação , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos da radiação , Dano ao DNA/efeitos dos fármacos , Dano ao DNA/efeitos da radiação , Feminino , Humanos , Extratos Vegetais/química , Protetores contra Radiação/química , Pele/patologia , Timol/química , Técnicas de Cultura de Tecidos , Raios Ultravioleta , Adulto JovemRESUMO
Cutaneous lipids, endogenously synthetized and transported by lipoproteins, play a pivotal role in maintaining skin barrier. An impairment of extracutaneous lipid trafficking leads to the development of xanthomas, mostly arising in hyperlipidemic patients, but also in subjects with high-density lipoprotein (HDL) deficiency. The aim of this work was to evaluate, in a genetically modified mouse model, lacking two protein components of HDL particles, apolipoprotein(apo)E and apoA-I, the effect of HDL deficiency on skin morphology. Control mice (C57BL/6), apoE deficient mice (EKO), apoA-I deficient mice (A-IKO) and apoA-I/apoE double knockout mice (A-IKO/EKO) were maintained on a low-fat/low-cholesterol diet up to 30 weeks of age. At sacrifice, skin biopsies were processed for light (LM) and transmission electron microscopy (TEM). Whereas the skin of EKO, A-IKO, and C57BL/6 mice was comparable, LM analysis in A-IKO/EKO mice showed an increase in dermal thickness and the presence of foam cells and T lymphocytes in reticular dermis. TEM analysis revealed the accumulation of cholesterol clefts in the papillary dermis and of cholesterol crystals within foam cells. In conclusion, A-IKO/EKO mice represent an experimental model for investigating the cutaneous phenotype of human HDL deficiency, thus mimicking a condition in which human xanthomatous lesions can develop.
Assuntos
Hipoalfalipoproteinemias/patologia , Pele/patologia , Animais , Apolipoproteína A-I/genética , Apolipoproteínas E/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Xantomatose/genética , Xantomatose/patologiaRESUMO
Recent studies suggest that Cu/Zn superoxide dismutase (SOD1) could be pathogenic in both familial and sporadic amyotrophic lateral sclerosis (ALS) through either inheritable or nonheritable modifications. The presence of a misfolded WT SOD1 in patients with sporadic ALS, along with the recently reported evidence that reducing SOD1 levels in astrocytes derived from sporadic patients inhibits astrocyte-mediated toxicity on motor neurons, suggest that WT SOD1 may acquire toxic properties similar to familial ALS-linked mutant SOD1, perhaps through posttranslational modifications. Using patients' lymphoblasts, we show here that indeed WT SOD1 is modified posttranslationally in sporadic ALS and is iper-oxidized (i.e., above baseline oxidation levels) in a subset of patients with bulbar onset. Derivatization analysis of oxidized carbonyl compounds performed on immunoprecipitated SOD1 identified an iper-oxidized SOD1 that recapitulates mutant SOD1-like properties and damages mitochondria by forming a toxic complex with mitochondrial Bcl-2. This study conclusively demonstrates the existence of an iper-oxidized SOD1 with toxic properties in patient-derived cells and identifies a common SOD1-dependent toxicity between mutant SOD1-linked familial ALS and a subset of sporadic ALS, providing an opportunity to develop biomarkers to subclassify ALS and devise SOD1-based therapies that go beyond the small group of patients with mutant SOD1.
Assuntos
Esclerose Lateral Amiotrófica/enzimologia , Tronco Encefálico/patologia , Proteínas Mutantes/toxicidade , Superóxido Dismutase/efeitos adversos , Superóxido Dismutase/metabolismo , Esclerose Lateral Amiotrófica/patologia , Feminino , Humanos , Linfócitos/efeitos dos fármacos , Linfócitos/enzimologia , Masculino , Pessoa de Meia-Idade , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/ultraestrutura , Proteínas Mutantes/química , Proteínas Mutantes/metabolismo , Oxirredução/efeitos dos fármacos , Ligação Proteica/efeitos dos fármacos , Estrutura Quaternária de Proteína , Transporte Proteico/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Superóxido Dismutase/química , Superóxido Dismutase/toxicidadeRESUMO
AIMS: Mitochondria are plastic organelles that continuously undergo biogenesis, fusion, fission, and mitophagy to control cellular energy metabolism, calcium homeostasis, hormones, sterols, and bile acids (BAs) synthesis. Here, we evaluated how the impairment of mitochondrial fusion in hepatocytes affects diet-induced liver steatosis and obesity. METHODS AND RESULTS: Male mice selectively lacking the key protein involved in inner mitochondrial fusion, optic atrophy 1 (OPA1) (OPA1ΔHep) were fed a high fat diet (HFD) for 20 weeks. OPA1ΔHep mice were protected from the development of hepatic steatosis and obesity because of reduced lipid absorption; a profile which was accompanied by increased respiratory exchange ratio in vivo, suggesting a preference for carbohydrates in OPA1ΔHep compared to controls. At the molecular level, this phenotype emerged as a consequence of poor mitochondria-peroxisome- endoplasmic reticulum (ER) tethering in OPA1 deficient hepatocytes, which impaired BAs conjugation and release in the bile, thus impacting lipid absorption from the diet. Concordantly, the liver of subjects with non-alcoholic fatty liver disease (NAFLD) presented an increased expression of OPA1 and of the network of proteins involved in mitochondrial function when compared with controls. CONCLUSION: Patients with NAFLD present increased expression of proteins involved in mitochondrial fusion in the liver. The selective deficency of OPA1 in hepatocytes protects mice from HFD-induced metabolic dysfunction by reducing BAs secretion and dietary lipids absorption as a consequence of reduced liver mitochondria-peroxisome-ER tethering.
Assuntos
Hepatopatia Gordurosa não Alcoólica , Humanos , Masculino , Camundongos , Animais , Hepatopatia Gordurosa não Alcoólica/genética , Hepatopatia Gordurosa não Alcoólica/prevenção & controle , Hepatopatia Gordurosa não Alcoólica/complicações , Dinâmica Mitocondrial , Fígado/metabolismo , Hepatócitos/metabolismo , Obesidade/metabolismo , Dieta Hiperlipídica , Lipídeos , Metaboloma , Ácidos e Sais Biliares/metabolismo , Camundongos Endogâmicos C57BLRESUMO
(1) Background: Atopic dermatitis is one of the most common inflammatory skin diseases characterized by T helper (Th) 2 and Th22 cells producing interleukin (IL)-4/IL-13 and IL-22, respectively. The specific contribution of each cytokine to the impairment of the physical and the immune barrier via Toll-like receptors (TLRs) is poorly addressed concerning the epidermal compartment of the skin. (2) Methods: The effect of IL-4, IL-13, IL-22, and the master cytokine IL-23 is evaluated in a 3D model of normal human skin biopsies (n = 7) at the air-liquid interface for 24 and 48 h. We investigated by immunofluorescence the expressions of (i) claudin-1, zonula occludens (ZO)-1 filaggrin, involucrin for the physical barrier and (ii) TLR2, 4, 7, 9, human beta-defensin 2 (hBD-2) for the immune barrier. (3) Results: Th2 cytokines induce spongiosis and fail in impairing tight junction composition, while IL-22 reduces and IL-23 induces claudin-1 expression. IL-4 and IL-13 affect the TLR-mediated barrier largely than IL-22 and IL-23. IL-4 early inhibits hBD-2 expression, while IL-22 and IL-23 induce its distribution. (4) Conclusions: This experimental approach looks to the pathogenesis of AD through molecular epidermal proteins rather than cytokines only and paves the way for tailored patient therapy.
RESUMO
Paraprobiotics and postbiotics represent a valid alternative to probiotic strains for ameliorating and preserving a healthy intestinal epithelial barrier (IEB). The present study investigated the effects of surface layer proteins (S-layer) of the dairy strain Lactobacillus helveticus ATCC® 15009™ (Lb ATCC® 15009™), as paraprobiotic, on the morpho-functional modulation of IEB in comparison to live or heat-inactivated Lb ATCC® 15009™ in an in vitro co-culture of Caco-2/HT-29 70/30 cells. Live or heat-inactivated Lb ATCC® 15009™ negatively affected transepithelial electrical resistance (TEER) and paracellular permeability, and impaired the distribution of Claudin-1, a tight junction (TJ) transmembrane protein, as detected by immunofluorescence (IF). Conversely, the addition of the S-layer improved TEER and decreased permeability in physiological conditions in co-cultures with basal TEER lower than 50 ohmcm2, indicative of a more permeable physiological IEB known as leaky gut. Transmission electron microscopy (TEM) and IF analyses suggested that the S-layer induces a structural TJ rearrangement and desmosomes' formation. S-layer also restored TEER and permeability in the presence of LPS, but not of a mixture of pro-inflammatory cytokines (TNF-α plus IFN-γ). IF analyses showed an increase in Claudin-1 staining when LPS and S-layer were co-administered with respect to LPS alone; in addition, the S-layer counteracted the reduction of alkaline phosphatase detoxification activity and the enhancement of pro-inflammatory interleukin-8 release both induced by LPS. Altogether, these data corroborate a paraprobiotic role of S-layer from Lb ATCC® 15009™ as a possible candidate for therapeutic and prophylactic uses in conditions related to gastrointestinal health and correlated with extra-intestinal disorders.
RESUMO
Tumor Necrosis Factor-α (TNF-α) plays a pivotal role in psoriasis, an immuno-mediated and genetic skin disease. Anti-TNF-α inhibitors, such as etanercept, are widely used in clinical practice. By immunofluorescence, we investigated the expression of junctional transmembrane proteins in desmosomes (desmocollin-1, Dsc1; desmoglein-1, Dsg1), adherens junctions (E-cadherin), tight junctions (occludin), biomarkers of keratinocyte differentiation (keratin-10, K10; keratin-14, K14; keratin-16, K16; involucrin), epithelial proliferation and apoptosis in psoriatic skin before/after etanercept treatment (n = 5) and in control skin samples (n = 5). Occludin, K14, K16 and involucrin expressions were altered in psoriatic epidermis, while Dsc1, Dsg1, E-cadherin and K10 localisations were comparable to controls. Etanercept promoted the restoration of the physiological condition as suggested by a more differentiated keratinocyte phenotype and a reduced epidermal proliferation rate.
Assuntos
Anti-Inflamatórios não Esteroides/uso terapêutico , Imunoglobulina G/uso terapêutico , Psoríase/tratamento farmacológico , Psoríase/patologia , Receptores do Fator de Necrose Tumoral/uso terapêutico , Anti-Inflamatórios não Esteroides/farmacologia , Apoptose , Caderinas/metabolismo , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desmocolinas/metabolismo , Desmogleína 1/metabolismo , Desmossomos/metabolismo , Etanercepte , Feminino , Humanos , Imunoglobulina G/farmacologia , Queratina-10/metabolismo , Queratina-14/metabolismo , Queratina-16/metabolismo , Queratinócitos/efeitos dos fármacos , Ocludina/metabolismo , Fenótipo , Precursores de Proteínas/metabolismo , Psoríase/metabolismo , Junções Íntimas , Fator de Necrose Tumoral alfa/antagonistas & inibidoresRESUMO
CONTEXT: Human oral mucosa is the combustion chamber of cigarette, but scanty evidence is available about the early smoke effects. OBJECTIVE: The present work aimed at evaluating from a morphological point of view whole smoke early effects on epithelial intercellular adhesion and keratinocyte terminal differentiation in a three-dimensional model of human oral mucosa. MATERIALS AND METHODS: Biopsies of keratinized oral mucosa of healthy nonsmoking women (n = 5) were collected. After culturing in a Transwell system, one fragment of each biopsy was exposed to the smoke of one single cigarette; the remnant represented the internal control. The distribution of epithelial differentiation markers (keratin-10, K10, and keratin-14, K14, for suprabasal and basal cells respectively), desmosomes (desmoglein-1, desmoglein-3), tight junctions (occludin), adherens junctions (E-cadherin, ß-catenin), and apoptotic cells (p53, caspase 3) were evaluated by immunofluorescence. RESULTS: Quantitative analysis of K14 immunolabeling revealed an overexpression in the suprabasal layers as early as 3 h after smoke exposure, without impairment of the epithelial junctional apparatus and apoptosis induction. DISCUSSION AND CONCLUSION: These results suggested that the first significant response to cigarette smoke came from the basal and suprabasal layers of the human oral epithelium. The considered model maintained the three-dimensional arrangement of the human mucosa in the oral cavity and mimicked the inhalation/exhalation cycle during the exposure to cigarette smoke, offering a good possibility to extrapolate the reported observations to humans.
Assuntos
Queratina-14/metabolismo , Mucosa Bucal/efeitos dos fármacos , Fumaça/efeitos adversos , Fumar/efeitos adversos , Adulto , Caderinas/metabolismo , Caspase 3/metabolismo , Desmogleína 1/metabolismo , Desmogleína 3/metabolismo , Feminino , Humanos , Queratina-10/metabolismo , Proteínas de Membrana/metabolismo , Mucosa Bucal/metabolismo , Ocludina , Técnicas de Cultura de Tecidos , Nicotiana , Proteína Supressora de Tumor p53/metabolismo , beta Catenina/metabolismoRESUMO
Epidermal junctions help to preserve cutaneous homeostasis and, consequently, protect the body against a wide range of environmental stresses [...].
RESUMO
This pilot study was aimed at comparing TLR7/TLR9 expression, cytoskeletal arrangement, and cell proliferation by indirect immunofluorescence in parallel lesional and non lesional skin samples of guttate psoriasis (PG) and psoriasis vulgaris (PV) in five male patients for each group (n=10). TLR7 expression was detected throughout all the epidermal compartment in PV samples, while in PG skin was restricted to the granular layer. TLR9 was present in the granular layer of non lesional skin and in the suprabasal layers of PV/PG lesional skin. Cell proliferation was localized in all the epidermal layers in lesional PG and PV, consistently with the immunopositivity for the "psoriatic keratin" K16. In the suprabasal layers of lesional PG and PV skin, a similar K17 expression was detected and K10 exhibited a patchy distribution. The present results suggest that TLR7 expression can be considered an intrinsic and differential histomorphological feature of PV.