RESUMO
Resource utilization of gangue solid waste has become an essential research direction for green development. This study prepared a novel gangue based geopolymer adsorbent (GPA) for the removal of Cd(II) from wastewater using pretreatment gangue (PG) as the main raw material. The ANOVA indicated that the obtained quadratic model of fitness function (R2 > 0.99, P-value <0.0001) was significant and adequate, and the contribution of the three preparation conditions to the removal of Cd(II) was: calcination temperature > Na2CO3:PG ratio > water-glass solid content. The hybrid response surface method and gray wolf optimization (RSM-GWO) algorithm were adopted to acquire the optimum conditions: Na2CO3:PG ratio = 1.05, calcination temperature of 701 °C, solid content of water glass of 22.42%, and the removal efficiency of Cd(II) by GPA obtained under the optimized conditions (GPAC) was 97.84%. Adsorption kinetics, adsorption isotherms and characterization by XRD, FTIR, Zeta potential, FSEM-EDS and BET were utilized to investigate the adsorption mechanism of GPAC on Cd(II). The results showed that the adsorption of Cd(II) from GPAC was consistent with the pseudo-second-order model (R2 = 0.9936) and the Langmuir model (R2 = 0.9988), the adsorption was a monolayer adsorption process and the computed maximum Cd(II) adsorption (50.76 mg g-1) was approximate to experimental results (51.47 mg g-1). Moreover, the surface morphology of GPAC was rough and porous with a specific surface area (SSA) of 18.54 m2 g-1, which provided abundant active sites, and the internal kaolinite was destroyed to produce a zeolite-like structure where surface complexation and ion exchange with Cd(II) through hydroxyl (-OH) and oxygen-containing groups (-SiOH and -AlOH) were the main adsorption mechanisms. Thus, GPAC is a lucrative adsorbent material for effective Cd(II) wastewater treatment, complying with the "high value-added" usage of solid wastes and "waste to cure poison" green sustainable development direction.
Assuntos
Águas Residuárias , Poluentes Químicos da Água , Cádmio , Poluentes Químicos da Água/análise , Temperatura , Caulim , Adsorção , Cinética , Concentração de Íons de HidrogênioRESUMO
The effects of six ionic liquids with surfactant property (1-hydroxyethyl-3-methyl imidazolium bis(trifluoromethylsulfonyl)imide ([HOEtMIm][NTf2]), 1-hydroxyethyl-3-methyl imidazolium tetrafluoroborate ([HOEtMIm][BF4]), 1-dodecyl-3- methyl imidazolium bromide ([C12MIm]Br), 1-tetradecyl-3- methyl imidazolium bromide ([C14MIm]Br), trioctyl methyl ammonium chloride ([N8,8,8,1])Cl, and tetraethyl ammonium chloride ([N2,2,2,2]Cl)) on the oxidation characteristics and functional groups of coal were studied by means of critical micelle concentration, surface tension, thermogravimetric analysis, temperature-programmed oxidation, and Fourier transform infrared spectroscopy (FTIR) measurements. The lower critical micelle concentration for the ionic liquids except the [N2,2,2,2]Cl suggests the favorable surface activity of these ionic liquids. The surface activities of [N8,8,8,1]Cl, [C14MIm]Br, [C12MIm]Br, and [HOEtMIm][NTf2] were high, while that of [N2,2,2,2]Cl was relatively lower. The thermal stabilities of [HOEtMIm][NTf2] and [HOEtMIm][BF4] were high, while those of [N8,8,8,1]Cl and [N2,2,2,2]Cl were lower. The oxidation activities of ionic liquid-mixed coals were weakened to different degrees except [N8,8,8,1]Cl-mixed coal, because of the poor thermal stability and decomposition of [N8,8,8,1]Cl accelerating the coal oxidation. The other five ionic liquids were suitable for inhibiting coal oxidation, particularly the [HOEtMIm][BF4] and [HOEtMIm][NTf2] with higher inhibition rate, longer inhibition time, and also better thermal stabilities. The activation energy results further confirmed such inhibition effect. The functional group results showed that treatment of ionic liquids on coal can change the contents of hydrogen bonds, aliphatic groups, and aromatic groups in coal. It was inferred that the [HOEtMIm][BF4], [HOEtMIm][NTf2], and [C14MIm]Br were more effectively to affect coal structure and decrease coal oxidation activity.