Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(19)2021 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-33941704

RESUMO

Intranasal (i.n.) immunization is a promising vaccination route for infectious respiratory diseases such as influenza. Recombinant protein vaccines can overcome the safety concerns and long production phase of virus-based influenza vaccines. However, soluble protein vaccines are poorly immunogenic if administered by an i.n. route. Here, we report that polyethyleneimine-functionalized graphene oxide nanoparticles (GP nanoparticles) showed high antigen-loading capacities and superior immunoenhancing properties. Via a facile electrostatic adsorption approach, influenza hemagglutinin (HA) was incorporated into GP nanoparticles and maintained structural integrity and antigenicity. The resulting GP nanoparticles enhanced antigen internalization and promoted inflammatory cytokine production and JAWS II dendritic cell maturation. Compared with soluble HA, GP nanoparticle formulations induced significantly enhanced and cross-reactive immune responses at both systemic sites and mucosal surfaces in mice after i.n. immunization. In the absence of any additional adjuvant, the GP nanoparticle significantly boosted antigen-specific humoral and cellular immune responses, comparable to the acknowledged potent mucosal immunomodulator CpG. The robust immune responses conferred immune protection against challenges by homologous and heterologous viruses. Additionally, the solid self-adjuvant effect of GP nanoparticles may mask the role of CpG when coincorporated. In the absence of currently approved mucosal adjuvants, GP nanoparticles can be developed into potent i.n. influenza vaccines, providing broad protection. With versatility and flexibility, the GP nanoplatform can be easily adapted for constructing mucosal vaccines for different respiratory pathogens.


Assuntos
Reações Cruzadas/imunologia , Vírus da Influenza A Subtipo H3N2/imunologia , Vacinas contra Influenza/imunologia , Influenza Humana/imunologia , Nanopartículas/química , Infecções por Orthomyxoviridae/imunologia , Administração Intranasal , Animais , Linhagem Celular , Citocinas/imunologia , Citocinas/metabolismo , Feminino , Grafite/química , Grafite/imunologia , Glicoproteínas de Hemaglutininação de Vírus da Influenza/química , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Humanos , Imunidade Humoral/efeitos dos fármacos , Imunidade Humoral/imunologia , Imunidade nas Mucosas/efeitos dos fármacos , Imunidade nas Mucosas/imunologia , Vírus da Influenza A Subtipo H3N2/efeitos dos fármacos , Vírus da Influenza A Subtipo H3N2/fisiologia , Vacinas contra Influenza/administração & dosagem , Vacinas contra Influenza/química , Influenza Humana/prevenção & controle , Influenza Humana/virologia , Camundongos Endogâmicos BALB C , Nanopartículas/administração & dosagem , Oligodesoxirribonucleotídeos/química , Oligodesoxirribonucleotídeos/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Infecções por Orthomyxoviridae/virologia , Polietilenoimina/química , Vacinação/métodos
2.
Small ; 19(34): e2301801, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37162451

RESUMO

The epidemics caused by the influenza virus are a serious threat to public health and the economy. Adding appropriate adjuvants to improve immunogenicity and finding effective mucosal vaccines to combat respiratory infection at the portal of virus entry are important strategies to boost protection. In this study, a novel type of core/shell protein nanoparticle consisting of influenza nucleoprotein (NP) as the core and NA1-M2e or NA2-M2e fusion proteins as the coating antigens by SDAD hetero-bifunctional crosslinking is exploited. Immune-stimulating complexes (ISCOMs)/monophosphoryl lipid A (MPLA) adjuvants further boost the NP/NA-M2e SDAD protein nanoparticle-induced immune responses when administered intramuscularly. The ISCOMs/MPLA-adjuvanted protein nanoparticles are delivered through the intranasal route to validate the application as mucosal vaccines. ISCOMs/MPLA-adjuvanted nanoparticles induce significantly strengthened antigen-specific antibody responses, cytokine-secreting splenocytes in the systemic compartment, and higher levels of antigen-specific IgA and IgG in the local mucosa. Meanwhile, significantly expanded lung resident memory (RM) T and B cells (TRM /BRM ) and alveolar macrophages population are observed in ISCOMs/MPLA-adjuvanted nanoparticle-immunized mice with a 100% survival rate after homogeneous and heterogeneous H3N2 viral challenges. Taken together, ISCOMs/MPLA-adjuvanted protein nanoparticles could improve strong systemic and mucosal immune responses conferring protection in different immunization routes.


Assuntos
ISCOMs , Vacinas contra Influenza , Nanopartículas , Animais , Camundongos , Imunidade nas Mucosas , Complexo Antígeno-Anticorpo , Vírus da Influenza A Subtipo H3N2 , Adjuvantes Imunológicos , Camundongos Endogâmicos BALB C
3.
Nanomedicine ; 47: 102614, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36265560

RESUMO

Universal influenza vaccines are urgently needed to prevent recurrent influenza epidemics and inevitable pandemics. We generated double-layered protein nanoparticles incorporating two conserved influenza antigens-nucleoprotein and neuraminidase-through a two-step desolvation-crosslinking method. These protein nanoparticles displayed immunostimulatory properties to antigen-presenting cells by promoting inflammatory cytokine (IL-6 and TNF-α) secretion from JAWS II dendric cells. The nanoparticle immunization induced significant antigen-specific humoral and cellular responses, including antigen-binding and neutralizing antibodies, antibody- and cytokine (IFN-γ and IL-4)-secreting cells, and NP147-155 tetramer-specific cytotoxic T lymphocyte (CTL) responses. Co-administration of monophosphoryl lipid A (MPLA, a toll-like receptor 4 agonist) with the protein nanoparticles further improved immune responses and conferred heterologous and heterosubtypic influenza protection. The MPLA-adjuvanted nanoparticles reduced lung inflammation post-infection. The results demonstrated that the combination of MPLA and conserved protein nanoparticles could be developed into an improved universal influenza vaccine strategy.


Assuntos
Adjuvantes Imunológicos , Infecções por Orthomyxoviridae , Orthomyxoviridae , Citocinas , Neuraminidase , Nucleoproteínas , Animais , Camundongos , Infecções por Orthomyxoviridae/prevenção & controle , Nanopartículas
4.
Small ; 18(25): e2200836, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35607768

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) has caused the global pandemic. The virus is rapidly evolving, characterized by the emergence of several major variants. Stable prefusion spike protein (Pre) is the immunogen in current vaccines but is limited in protecting against different variants. Here, the immune responses induced by the relatively conserved stem subunit (S2) of spike protein versus Pre are investigated. Pre generates the most robust neutralization responses against SARS-CoV-2 variants in vesicular stomatitis virus pseudovirus-based assessment but elicits less antibody-dependent cellular cytotoxicity (ADCC) activity than S2. By contrast, S2 induces the most balanced immunoglobulin G (IgG) antibodies with potent and broad ADCC activity although produces weaker neutralization. The immunogenicity of S2 and Pre improves by incorporating the two proteins into double-layered protein nanoparticles. The resulting protein nanoparticles Pre/S2 elicit higher neutralizing antibodies than Pre alone, and stronger ADCC than S2 alone. Moreover, nanoparticles produce more potent and balanced serum IgG antibodies than the corresponding soluble protein mixture, and the immune responses are sustained for at least four months after the immunization. Thus, the double-layered protein nanoparticles have the potential to be developed into broader SARS-CoV-2 vaccines with excellent safety profiles.


Assuntos
COVID-19 , Nanopartículas , Animais , Anticorpos Neutralizantes , Anticorpos Antivirais , Citotoxicidade Celular Dependente de Anticorpos , Vacinas contra COVID-19 , Humanos , Imunoglobulina G , Camundongos , SARS-CoV-2 , Glicoproteína da Espícula de Coronavírus/metabolismo
5.
Glycoconj J ; 39(1): 131-141, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35286528

RESUMO

Antibiotic-associated diarrhea (AAD) is a common side-effect of antibiotic treatment resulting from an imbalance in the colonic bacteria. The hypothesis of this study is to ask whether polysaccharide from the rhizome of Dioscorea opposita which is recorded as conventional herbs and food for diarrhea treatment in Southeast Asia, may be an active compound against diarrhea induced by antibiotics. To address, firstly, a homogenous polysaccharide, DOP0.2-S-3 was characterized as a homogalacturonan containing linear repeating units of → 4)-α-D-GalAp(1 → 4)-α-D-GalAp(1 → with the average molecular weight of 14 kDa. DOP0.2-S-3 significantly reduced the water content and defecation times caused by AAD in mice, while it also remarkably attenuated the cytokines of IL-1ß and IL-6 expression in mice colon tissues. DOP0.2-S-3 decreased potential pathogen and increased Bacteroidetes in the mice gut. These results suggested DOP0.2-S-3 might be a new leading compound for the functional foods or drug candidate development against AAD partially through regulating gut flora.


Assuntos
Dioscorea , Animais , Diarreia/induzido quimicamente , Diarreia/tratamento farmacológico , Interleucina-1 , Interleucina-6/genética , Camundongos , Pectinas
6.
Bioorg Med Chem ; 68: 116806, 2022 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-35696797

RESUMO

Phosphorylated saccharides are valuable targets in glycochemistry and glycobiology, which play an important role in various physiological and pathological processes. The current research on phosphorylated saccharides primarily focuses on small molecule inhibitors, glycoconjugate vaccines and novel anti-tumour targeted drug carrier materials. It can maximise the pharmacological effects and reduce the toxicity risk caused by nonspecific off-target reactions of drug molecules. However, the number and types of natural phosphorylated saccharides are limited, and the complexity and heterogeneity of their structures after extraction and separation seriously restrict their applications in pharmaceutical development. The increasing demands for the research on these molecules have extensively promoted the development of carbohydrate synthesis. Numerous innovative synthetic methodologies have been reported regarding the continuous expansion of the potential building blocks, catalysts, and phosphorylation reagents. This review summarizes the latest methods for enzymatic and chemical synthesis of phosphorylated saccharides, emphasizing their breakthroughs in yield, reactivity, regioselectivity, and application scope. Additionally, the anti-bacterial, anti-tumour, immunoregulatory and other biological activities of some phosphorylated saccharides and their applications were also reviewed. Their structure-activity relationship and mechanism of action were discussed and the key phosphorylation characteristics, sites and extents responsible for observed biological activities were emphasised. This paper will provide a reference for the application of phosphorylated saccharide in the research of carbohydrate-based drugs in the future.


Assuntos
Carboidratos , Neoplasias , Carboidratos/farmacologia , Humanos
7.
Nanomedicine ; 40: 102479, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34743020

RESUMO

Influenza viral infection causes acute upper respiratory diseases in humans, posing severe risks to global public health. However, current vaccines provide limited protection against mismatched circulating influenza A viruses. Here, the immune responses induced in mice by novel double-layered protein nanoparticles were investigated. The nanoparticles were composed of influenza nucleoprotein (NP) cores and hemagglutinin (HA) or matrix 2 protein ectodomain (M2e) shells. Vaccination with the nanoparticles significantly enhanced M2e-specific serum antibody titers and concomitant ADCC responses. Robust NP-specific T cell responses and robust HA neutralization were also detected. Moreover, vaccination with a trivalent nanoparticle combination containing two routinely circulated HA, conserved M2e, and NP reduced lung virus titers, pulmonary pathologies, and weight loss after homologous virus challenge. This combination also improved survival rates against heterologous and heterosubtypic influenza virus challenges. Our results demonstrate that the trivalent combination elicited potent and long-lasting immune responses conferring influenza viral cross-protection.


Assuntos
Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Nanopartículas , Infecções por Orthomyxoviridae , Animais , Anticorpos Antivirais , Hemaglutininas , Humanos , Influenza Humana/prevenção & controle , Camundongos , Camundongos Endogâmicos BALB C , Nucleoproteínas , Infecções por Orthomyxoviridae/prevenção & controle , Vacinação/métodos , Proteínas da Matriz Viral
8.
Pharm Biol ; 58(1): 915-924, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32924742

RESUMO

CONTEXT: Lilium davidii var. unicolour Cotton (Lilium genus, Liliaceae) is an edible plant and a herb used in China to alleviate insomnia. OBJECTIVE: To investigate the alleviating insomnia mechanism of L. davidii (LD). MATERIALS AND METHODS: Wistar rats were intraperitoneally injected with p-chlorophenylalanine (PCPA) to establish an insomnia model. Rats were divided into six groups (n = 8): Control, PCPA, Estazolam (0.5 mg/kg), LD extract in low, medium and high doses (185.22, 370.44, 740.88 mg/kg). Serum hormone levels of the HPA axis, levels of 5-HT, NE and MT, and the expression of GABAA and 5-HT1A receptors in hypothalamus were determined. Moreover, behavioural and pathological changes in the hypothalamus were evaluated. RESULTS: After LD administration, body weight and brain coefficient increased by 2.74% and 8.22%, respectively, and the adrenal coefficient decreased by 25%, compared with PCPA group. Elevation of the serum hypothalamic-pituitary-adrenal (HPA) axis hormone CRH (11.24 ± 3.16 ng/mL), ACTH (565.87 ± 103.44 pg/mL) and CORT (44.28 ± 8.73 ng/mL) in the PCPA group was reversed after LD treatment. Furthermore, abnormal excitatory behaviour [5 min movement distance (2096.34 ± 259.51 cm), central exercise time (5.28 ± 1.08 s)] of insomnia rats in the PCPA group was also relieved. LD extract increased 5-HT and MT levels, reduced NE level in the hypothalamus, and upregulated the expression of GABAA R and 5-HT1A. Moreover, LD extract may improve the pathology of neurons in the hypothalamus. CONCLUSIONS: LD can be considered to develop health-care food or novel drugs to cope with the increasing number of insomniacs.


Assuntos
Sistema Hipotálamo-Hipofisário/efeitos dos fármacos , Sistema Hipotálamo-Hipofisário/metabolismo , Extratos Vegetais/farmacologia , Distúrbios do Início e da Manutenção do Sono/prevenção & controle , Hormônio Adrenocorticotrópico/sangue , Animais , China , Corticosterona/sangue , Hormônio Liberador da Corticotropina/sangue , Hipotálamo/efeitos dos fármacos , Hipotálamo/metabolismo , Lilium , Masculino , Melatonina/metabolismo , Modelos Animais , Neurotransmissores/metabolismo , Teste de Campo Aberto/efeitos dos fármacos , Ratos , Ratos Wistar
9.
J Sep Sci ; 42(11): 2023-2031, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30947378

RESUMO

A core-shell structured magnetic polyimide composite has been synthesized by the covalent coating of a mesoporous polyimide polymer onto the surface of magnetite nanoparticles. The nanocomposite was characterized by scanning electron microscopy, transmission electron microscopy, N2 adsorption-desorption isotherms, X-ray diffraction, infrared spectroscopy, and vibrating sample magnetometry. The results showed that the prepared composite had a large surface area (306.45 m²/g), a unique pore size (2.15 nm), and strong magnetic properties (45.7 emµ/g), rendering it a promising sorbent material for magnetic solid-phase extraction. The parameters that affect the extraction efficiency of rhodamine B were optimized with the assistance of response surface methodology. Under the optimal conditions, the developed method has been successfully applied to determine the rhodamine B in food samples. The linearities and limits of detection of rhodamine B in hot pepper, red wine, and chili powder samples were measured. Satisfactory recoveries in the range of 94.8-103.3% with relative standard deviations <5.5% were obtained. Investigation of the adsorption mechanism of magnetic polyimide composite indicated that multiple interactions, including hydrophobic, π-π, and hydrogen bonding interactions, were involved in the adsorption process.


Assuntos
Capsicum/química , Magnetismo/métodos , Nanocompostos/química , Rodaminas/isolamento & purificação , Extração em Fase Sólida/métodos , Vinho/análise , Adsorção , Corantes Fluorescentes , Contaminação de Alimentos/análise , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Magnetismo/instrumentação , Porosidade , Pós/química , Resinas Sintéticas/química , Rodaminas/química , Extração em Fase Sólida/instrumentação
10.
Guang Pu Xue Yu Guang Pu Fen Xi ; 36(2): 482-6, 2016 Feb.
Artigo em Zh | MEDLINE | ID: mdl-27209754

RESUMO

Simulated water samples of 3 kinds of preservatives and 4 kinds of sweeteners were formulated by using orthogonal design. Kernel independent component analysis (KICA) was used to process the UV spectra of the simulated water samples and the beverages added different amounts of the additive standards, then the independent components (ICs), i. e. the UV spectral profiles of the additives, and the ICs' coefficient matrices were used to establish UV-KICA-SVR prediction model of the simulated preservatives and sweeteners solutions using support vector regression (SVR) analysis. The standards added beverages samples were obtained by adding different amounts level of additives in carbonated beverages, their UV spectra were processed by KICA, then IC information represented to the additives and other sample matrix were obtained, and the sample background can be deducted by removing the corresponding IC, other ICs' coefficient matrices were used to estimate the amounts of the additives in the standard added beverage samples based on the UV-KICA-SVR model, while the intercept of linear regression equation of predicted amounts and the added amounts in the standard added samples is the additive content in the raw beverage sample. By utilization of chemometric "blind source separation" method for extracting IC information of the tested additives in the beverage and other sample matrix, and using SVR regression modeling to improve the traditional standard addition method, a new method was proposed for the screening of the preservatives and sweeteners in carbonated beverages. The proposed UV-KICA-SVR method can be used to determine 3 kinds of preservatives and 4 kinds of sweetener in the carbonate beverages with the limit of detection (LOD) are located with the range 0.2-1.0 mg · L⁻¹, which are comparable to that of the traditional high performance liquid chromatographic (HPLC) method.


Assuntos
Bebidas Gaseificadas/análise , Conservantes de Alimentos/análise , Edulcorantes/análise , Análise Espectral , Máquina de Vetores de Suporte
11.
Nanotechnology ; 25(15): 155103, 2014 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-24651122

RESUMO

To date, the application of photodynamic therapy in deep tissue has been severely restricted by the limited penetration depth of excitation light, such as UV light and visible light. In this work, a protocol of upconverting crystal/dextran-g-DOPE nanocomplex (UCN/dextran-g-DOPE) was developed. The nanocomplex was assembled from the hydrophobic upconverting nanoparticle (UCN) core and hydrophilic lipid shell. The photosensitizer zinc phthalocyanine (ZnPc) loaded UCN/dextran-g-DOPE offers possibilities to overcome the problem mentioned above. The UCN core works as a transducer to convert deeply penetrating near-infrared light to visible light to activate ZnPc for photodynamic therapy. The dextran-g-DOPE lipid shell is used for loading ZnPc and protecting the whole system from nonspecific absorbance or corrosion during the transportation. The experiment results show that the nanocomplex is an individual sphere with an average size of 30 nm. The ZnPc was activated to produce singlet oxygen successfully by the upconverting fluorescence emitted from UCN. The nanocomplex has high fluorescence stability in alkaline or neutral buffer solutions. Importantly, the ZnPc loaded UCN/dextran-g-DOPE nanocomplex showed a significant inhibitory effect on tumor cells after NIR exposure. Our data suggest that a ZnPc loaded UCN/dextran-g-DOPE nanocomplex may be a useful nanoplatform for future PDT treatment in deep-cancer therapy based on the upconverting mechanism.


Assuntos
Neoplasias da Mama/diagnóstico , Dextranos , Corantes Fluorescentes , Indóis/uso terapêutico , Compostos Organometálicos/uso terapêutico , Fosfatidiletanolaminas , Fármacos Fotossensibilizantes/uso terapêutico , Mama/patologia , Neoplasias da Mama/terapia , Linhagem Celular Tumoral , Dextranos/química , Portadores de Fármacos/química , Feminino , Corantes Fluorescentes/química , Humanos , Indóis/administração & dosagem , Indóis/química , Isoindóis , Compostos Organometálicos/administração & dosagem , Compostos Organometálicos/química , Fosfatidiletanolaminas/química , Fotoquimioterapia/métodos , Fármacos Fotossensibilizantes/administração & dosagem , Fármacos Fotossensibilizantes/química , Compostos de Zinco
12.
Viruses ; 16(1)2024 01 14.
Artigo em Inglês | MEDLINE | ID: mdl-38257820

RESUMO

mRNA-based vaccine technology has been significantly developed and enhanced, particularly highlighted by the authorization of mRNA vaccines for addressing the COVID-19 pandemic. Various biomaterials are developed in nano-scales and applied as mRNA vaccine delivery platforms. However, how these mRNA nanoplatforms influence immune responses has not been thoroughly studied. Hence, we have reviewed the current understanding of various mRNA vaccine platforms. We discussed the possible pathways through which these platforms moderate the host's innate immunity and contribute to the development of adaptive immunity. We shed light on their development in reducing biotoxicity and enhancing antigen delivery efficiency. Beyond the built-in adjuvanticity of mRNA vaccines, we propose that supplementary adjuvants may be required to fine-tune and precisely control innate immunity and subsequent adaptive immune responses.


Assuntos
Pandemias , Vacinas de mRNA , Humanos , Imunidade Inata , Imunidade Adaptativa , RNA Mensageiro/genética
13.
Carbohydr Res ; 538: 109072, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38484601

RESUMO

Fructus Corni, derived from the dried fruit of Cornus officinalis Sieb. Et Zucc., is widely used as a food source and Chinese herb. Fructus Corni, as an indispensable ingredient in Liuwei Dihuang decoction, tonifies the liver and kidneys. As the main component of water decoctions, Fructus Corni polysaccharides demonstrate multifaceted effects, including hypoglycemic, hypolipidemic, antioxidant, anti-aging, sexual function regulation, and anti-epileptic, The ultrasound-assisted extraction method obtained the highest yields of Fructus Corni polysaccharides. However, it has notable shortcomings and lacks further innovation. The homogeneous polysaccharides obtained from Fructus Corni are mostly neutral polysaccharides with relatively limited structure, and the mechanism of their biological activity needs to be further elucidated. In addition, different extraction, isolation and purification methods may change the molecular weight, monosaccharide composition, and biological activity of polysaccharides. Therefore, this study systematically summarized the extraction, purification, structural features, and biological activities of Fructus Corni polysaccharides. This study aimed to provide support for the ongoing development and application of Fructus Corni polysaccharides.


Assuntos
Frutas , Polissacarídeos , Frutas/química , Polissacarídeos/química , Hipoglicemiantes , Fígado , Antioxidantes/farmacologia
14.
Int J Biol Macromol ; 271(Pt 2): 131982, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38724335

RESUMO

Fibrosis is a common pathological process affecting multiple organs. It refers to an increase in fibrous connective tissue and a decrease in parenchymal cells in damaged tissues or organs. This may lead to structural damage and functional decline or even organ failure. The incidence of fibrosis is increasing worldwide, and the need for safe and effective therapeutic drugs and treatments is pivotal. The intestinal tract has a complex network of exchanging information with various tissues in the body. It contains a sizeable microbial community of which the homeostasis and metabolites are closely related to fibrosis. Polysaccharides are a class of biomolecules present in natural products; they have potential value as anti-fibrotic prebiotics. Recently, polysaccharides have been found to improve fibrosis in different organs by decreasing inflammation and modulating the immune function and intestinal microbiota. In this paper, we reviewed the progress made in research concerning polysaccharides and organ fibrosis in relation to the intestinal microbiota from the pathogenesis of fibrosis to the relationship between the intestinal flora and fibrosis. Furthermore, we provide ideas and references for future polysaccharide-drug discovery and strategies for the treatment of fibrosis.


Assuntos
Fibrose , Microbioma Gastrointestinal , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Polissacarídeos/farmacologia , Polissacarídeos/química , Polissacarídeos/uso terapêutico , Animais , Prebióticos
15.
PLoS One ; 19(3): e0299658, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38452038

RESUMO

To address the issues of tractors using too much fuel and not being energy efficient, a predictive control strategy based on Pontryagin's minimum principle integrating working condition prediction is proposed for agricultural hybrid tractors. The Dongfanghong 1804 tractor is being used for research. Firstly, the main parameters of the hybrid drive system are determined and modeled. Secondly, based on the adaptive cubic exponential forecasting method, the working condition information for a period of time in the future is predicted through historical working condition information. Furthermore, combining the predicted working conditions information, the goal is to minimize the total energy consumption cost of the entire machine. Motor power and diesel engine power are control variables. The battery state of charge is a state variable. Subsequently, a predictive control strategy based on Pontryagin's minimum principle integrating working condition prediction is proposed. Finally, the simulation test is carried out based on the MATLAB simulation platform. Research indicates: under plowing conditions, compared with the power following control strategy, the proposed predictive control strategy can effectively manage the performance of the diesel engine and motor, ensuring they operate at their most efficient level. The total energy consumption costs of the power following control and predictive control strategies are 37.17 China Yuan (CNY) and 33.67 CNY, respectively. The cost of energy used is decreased by 9. 42%, which helps make tractor field plowing more efficient and economical.


Assuntos
Agricultura , Motivação , Fenômenos Físicos , China , Simulação por Computador
16.
RSC Med Chem ; 15(4): 1161-1175, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38665838

RESUMO

PD-L1 is a transmembrane protein overexpressed by tumor cells. It binds to PD-1 on the surface of T-cells, suppresses T-cell activity and hinders the immune response against cancer. Clinically, several monoclonal antibodies targeting PD-1/PD-L1 have achieved significant success in cancer immunotherapy. Nevertheless, their disadvantages, such as unchecked immune responses, high cost and long half-life, stimulated pharmacologists to develop small-molecule inhibitors targeting PD-1/PD-L1. After a batch of excellent inhibitors with a biphenyl core structure were firstly reported by BMS, more and more researchers focused on small-molecule inhibitors targeting PD-L1 rather than PD-1. Numerous small-molecule inhibitors were extensively designed and synthesized in the past few years. In this paper, the structural characteristics of PD-L1 and complexes of PD-L1 with its inhibitors are elaborated and small molecule inhibitors developed in the last decade are summarized as well. This paper aims to provide insights into further designing and synthesis of small molecule inhibitors targeting PD-L1.

17.
Vaccine ; 42(2): 111-119, 2024 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-38097456

RESUMO

The first influenza virus infection (imprinting) can lead to long-term immune memory and influence subsequent vaccinations and infections. Previously, we reported a polyethyleneimine (PEI)-Aichi hemagglutinin (HA)/CpG (PHC) nanoparticle with cross-protective potential against homologous and heterologous influenza strains. Here we studied how influenza immune imprinting influences the antibody responses to the PHC vaccination and the protection against heterosubtypic virus challenges. We found that pre-existing virus immunity can maintain or synergize the vaccine-induced antibody titers, depending on the imprinting virus HA phylogenetic group. The HA group 1 virus (PR8, H1N1)-imprinted mice displayed comparable antigen-specific antibody responses to those without imprinting post-PHC vaccination. In contrast, the group 2 virus (Phi, H3N2)-imprinted mice showed significantly more robust and balanced antibodies post-vaccination, conferring complete protection against body weight loss and lung inflammation upon heterosubtypic reassortant A/Shanghai/2/2013 (rSH, H7N9) virus challenge. Our findings suggest that influenza imprinting from the same HA phylogenetic group can synergize subsequent vaccination, conferring heterosubtypic protection.


Assuntos
Vírus da Influenza A Subtipo H1N1 , Subtipo H7N9 do Vírus da Influenza A , Vacinas contra Influenza , Influenza Humana , Infecções por Orthomyxoviridae , Animais , Camundongos , Humanos , Influenza Humana/prevenção & controle , Hemaglutininas , Nanovacinas , Polietilenoimina , Vírus da Influenza A Subtipo H3N2 , Filogenia , Anticorpos Antivirais , China , Glicoproteínas de Hemaglutininação de Vírus da Influenza , Camundongos Endogâmicos BALB C
18.
Anticancer Agents Med Chem ; 23(7): 736-746, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36278443

RESUMO

PURPOSE: The Warburg effect is an important metabolic feature of tumours, and hexokinase is the first ratelimiting enzyme of the glycolytic pathway during tumour metabolism. Among hexokinase subtypes, hexokinase 2 (HK2) is increasingly proving to be a key target for cancer treatment. This study presents the challenges and potential strategies for developing HK2 inhibitors by systematically summarising the characteristics of HK2 inhibitors reported in the literature and patents. METHODS: In this study, we analysed the HK2 active site using molecular docking and evaluated the structure, biochemical and physiological function, activity, and action mechanism of reported HK2 inhibitors using databases (Science, SCI Finder, CNKI, and WANFANG DATA). RESULTS: In total, 6 natural inhibitors of HK2, 9 synthetic inhibitors of HK2, and 3 compounds with patent-pending HK2 inhibitory effects were obtained by searching 87 articles. These inhibitors have poor efficacy and specificity when used alone and have numerous side effects; therefore, there is an urgent need to develop HK2 inhibitors with improved activity and high selectivity. CONCLUSION: HK2 has received much attention in anticancer drug development, but most previous studies have focused on elucidating the action mechanism of HK2 in carcinogenesis, whereas the development of its small-molecule inhibitors has rarely been reported. In this study, we analysed and illustrated the eutectic structure of small molecules with the catalytic structural domain of HK2 to develop highly selective and low-toxicity HK2 inhibitors.


Assuntos
Hexoquinase , Neoplasias , Humanos , Hexoquinase/metabolismo , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Glicólise , Linhagem Celular Tumoral
19.
Chem Asian J ; 18(12): e202300185, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37129956

RESUMO

A series of C10-position imidazole-modified catalpol derivatives are specifically designed and synthesized for serving as potential pancreatic cancer inhibitors, which are characterized by 1 H NMR, 13 C NMR and high-resolution mass spectrometry (HRMS). They were evaluated by the 3-[4, 5-dimethylthiazol-2-yl]-2, 5-diphenyltetrazolium bromide (MTT) test on two human pancreatic cancer cells PANC-1, BxPC-3 and normal pancreatic cell HPDE6-C7, which showed the significant inhibitory effected on the growth of human pancreatic cancer cells of PANC-1 and BxPC-3, especially 91.6% efficacy on BxPC-3, and 73.1% on PANC-1. Simulation studies like molecular docking supported strong binding of vascular endothelial growth factor receptor 2 (VEGFR-2) protein tyrosine kinase (PDB ID: 4AGD), a target of pancreatic cancer. A novel imidazol-modified catalpol compound 3i with strong inhibitory effect on pancreatic cancer cells, which could potentially develop into anti-pancreatic cancer drug candidates in the future.


Assuntos
Antineoplásicos , Neoplasias , Humanos , Linhagem Celular Tumoral , Proliferação de Células , Simulação de Acoplamento Molecular , Fator A de Crescimento do Endotélio Vascular , Antineoplásicos/química , Inibidores de Proteínas Quinases/química , Desenho de Fármacos , Relação Estrutura-Atividade , Neoplasias Pancreáticas
20.
Front Nutr ; 10: 1107551, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36969821

RESUMO

Non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease and is a leading cause of cirrhosis and hepatocellular carcinoma. Due to its complex pathophysiology, there is currently no approved therapy. Polysaccharide, a kind of natural product, possesses a wide range of pharmacological activities. Numerous preclinical studies have confirmed that polysaccharides could interfere with the occurrence and development of NAFLD at multiple interrelated levels, such as improvement of glucose and lipid metabolism, antioxidation, anti-inflammation, and regulation of gut-liver axis, thus showing great potential as novel anti-NAFLD drugs. In this paper, we reviewed the polysaccharides with anti-NAFLD effect in recent years, and also systematically analyzed their possible pharmacological mechanisms.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA