Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Sci Food Agric ; 101(10): 4050-4058, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-33349937

RESUMO

BACKGROUND: Cassava is rich in nutrition and has high edible value, but the development of the cassava industry is limited by the traditional low added value processing and utilization mode. In this study, cassava tuber was used as beer adjunct to develop a complete set of fermentation technology for manufacturing cassava beer. RESULTS: The activities of transaminase, phenylpyruvate decarboxylase and dehydrogenase in 2-phenylethanol Ehrlich biosynthesis pathway of Saccharomyces cerevisiae were higher in cassava beer than that of malt beer. Aminotransferase ARO9 gene and phenylpyruvate decarboxylase ARO10 gene were up-regulated in the late stage of fermentation, which indicated that they were the main regulated genes of 2-phenylethanol Ehrlich pathway with phenylalanine as substrate in cassava beer preparation. CONCLUSIONS: Compared with traditional wheat beer, cassava beer was similar in the content of nutrition elements, diacetyl, total acid, alcohol and carbon dioxide, but has the characteristics of fresh fragrance and better taste. The hydrocyanic acid contained in cassava root tubes was catabolized during fermentation and compliant with the safety standard of beverage. Further study found that the content of 2-phenylethanol in cassava beer increased significantly, which gave cassava beer a unique elegant and delicate rose flavor. © 2020 Society of Chemical Industry.


Assuntos
Cerveja/análise , Manihot/metabolismo , Álcool Feniletílico/metabolismo , Saccharomyces cerevisiae/metabolismo , Cerveja/microbiologia , Carboxiliases/genética , Carboxiliases/metabolismo , Fermentação , Manihot/química , Manihot/microbiologia , Álcool Feniletílico/análise , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Transaminases/genética , Transaminases/metabolismo
2.
BMC Plant Biol ; 20(1): 528, 2020 Nov 19.
Artigo em Inglês | MEDLINE | ID: mdl-33213376

RESUMO

BACKGROUND: The characteristics of elephant grass, especially its stem lignocellulose, are of great significance for its quality as feed or other industrial raw materials. However, the research on lignocellulose biosynthesis pathway and key genes is limited because the genome of elephant grass has not been deciphered. RESULTS: In this study, RNA sequencing (RNA-seq) combined with lignocellulose content analysis and cell wall morphology observation using elephant grass stems from different development stages as materials were applied to reveal the genes that regulate the synthesis of cellulose and lignin. A total of 3852 differentially expressed genes (DEGs) were identified in three periods of T1, T2, and T3 through RNA-seq analysis. Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis of all DEGs showed that the two most abundant metabolic pathways were phenylpropane metabolism, starch and sucrose metabolism, which were closely related to cell wall development, hemicellulose, lignin and cellulose synthesis. Through weighted gene co-expression network analysis (WGCNA) of DEGs, a 'blue' module highly associated with cellulose synthesis and a 'turquoise' module highly correlated with lignin synthesis were exhibited. A total of 43 candidate genes were screened, of which 17 had function annotations in other species. Besides, by analyzing the content of lignocellulose in the stem tissues of elephant grass at different developmental stages and the expression levels of genes such as CesA, PAL, CAD, C4H, COMT, CCoAMT, F5H and CCR, it was found that the content of lignocellulose was related to the expression level of these structural genes. CONCLUSIONS: This study provides a basis for further understanding the molecular mechanisms of cellulose and lignin synthesis pathways of elephant grass, and offers a unique and extensive list of candidate genes for future specialized functional studies which may promote the development of high-quality elephant grass varieties with high cellulose and low lignin content.


Assuntos
Metabolismo dos Carboidratos/genética , Celulose/metabolismo , Genoma de Planta/genética , Lignina/metabolismo , Pennisetum/genética , Transcriptoma , Parede Celular/metabolismo , Perfilação da Expressão Gênica , Lignina/análise , Redes e Vias Metabólicas/genética , Especificidade de Órgãos , Pennisetum/metabolismo , Polissacarídeos/metabolismo , Propano/metabolismo , Análise de Sequência de RNA , Amido/metabolismo , Sacarose/metabolismo
3.
J Hazard Mater ; 398: 123146, 2020 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-32768845

RESUMO

Poly-γ-glutamic acid (γ-PGA) could efficiently stabilize heavy metals in the environment. This study characterized the effects of two plant growth-promoting and γ-PGA-producing bacteria Bacillus subtilis W7 and Bacillus amyloliquefaciens W25 on Cd immobilization and γ-PGA production in soil filtrate and on the biomass and Cd uptake by lettuce in Cd-contaminated soil, the impact of these strains on the rhizosphere soil bacterial community was also evaluated. The strains reduced Cd concentration (16-75 %) in soil filtrate and strain W25 had a higher ability of producing γ-PGA and immobilizing Cd than strain W7. Compared with the control, the strains significantly increased the biomass (41-85 %) and reduced Cd uptake (19-41 %) by lettuce, reduced available Cd content (25-37 %) and increased the relative abundance of γ-PGA-producing bacteria (24-30 %) in Cd-contaminated soil, among which the effects of strain W25 were better than that of strain W7. Besides, these isolates also increased soil pH value, urease activity and the relative abundance of plant growth-promoting and metal-immobilizing bacteria such as Sphingomonas and Bacillus. In summary, the two strains reduced soil available Cd and lettuce Cd uptake by increasing the pH value, urease activity and the abundance of γ-PGA-producing bacteria, and regulating bacterial community structure in rhizosphere soil.


Assuntos
Microbiota , Poluentes do Solo , Bactérias , Cádmio/análise , Ácido Glutâmico , Lactuca , Ácido Poliglutâmico/análogos & derivados , Rizosfera , Solo , Poluentes do Solo/análise
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA