Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Adv Mater ; 34(28): e2202367, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35522089

RESUMO

Light utilization largely governs the performance of CO2 photoconversion, whereas most of the materials that are implemented in such an application are restricted in a narrow spectral absorption range. Plasmonic metamaterials with a designable regular pattern and facile tunability are excellent candidates for maximizing light absorption to generate substantial hot electrons and thermal energy. Herein, a concept of coupling a Au-based stacked plasmonic metamaterial with single Cu atoms in alloy, as light absorber and catalytic sites, respectively, is reported for gas-phase light-driven catalytic CO2 hydrogenation. The metamaterial structure works in a broad spectral range (370-1040 nm) to generate high surface temperature for photothermal catalysis, and also induces strong localized electric field in favor of transfer of hot electrons and reduced energy barrier in CO2 hydrogenation. This work unravels the significant role of a strong localized electric field in photothermal catalysis and demonstrates a scalable fabrication approach to light-driven catalysts based on plasmonic metamaterials.

2.
Sci Rep ; 6: 21951, 2016 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-26911657

RESUMO

Hydrogen sulfide (H2S) has been considered as the third biologically gaseous messenger (gasotransmitter) after nitric oxide (NO) and carbon monoxide (CO). Fluorescent detection of H2S in living cells is very important to human health because it has been found that the abnormal levels of H2S in human body can cause Alzheimer's disease, cancers and diabetes. Herein, we develop a cyclodextrin-based metal-organic nanotube, CD-MONT-2, possessing a {Pb14} metallamacrocycle for efficient detection of H2S. CD-MONT-2' (the guest-free form of CD-MONT-2) exhibits turn-on detection of H2S with high selectivity and moderate sensitivity when the material was dissolved in DMSO solution. Significantly, CD-MONT-2' can act as a fluorescent turn-on probe for highly selective detection of H2S in living cells. The sensing mechanism in the present work is based on the coordination of H2S as the auxochromic group to the central Pb(II) ion to enhance the fluorescence intensity, which is studied for the first time.


Assuntos
Ciclodextrinas/química , Sulfeto de Hidrogênio/análise , Metais/química , Microscopia de Fluorescência , Nanotubos/química , Corantes Fluorescentes/química , Células HeLa , Humanos , Chumbo/química , Espectrofotometria Ultravioleta , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA