RESUMO
The ongoing SARS-CoV-2 pandemic poses a severe global threat to public health, as do influenza viruses and other coronaviruses. Here, we present chimpanzee adenovirus 68 (AdC68)-based vaccines designed to universally target coronaviruses and influenza. Our design is centered on an immunogen generated by fusing the SARS-CoV-2 receptor-binding domain (RBD) to the conserved stalk of H7N9 hemagglutinin (HA). Remarkably, the constructed vaccine effectively induced both SARS-CoV-2-targeting antibodies and anti-influenza antibodies in mice, consequently affording protection from lethal SARS-CoV-2 and H7N9 challenges as well as effective H3N2 control. We propose our AdC68-vectored coronavirus-influenza vaccine as a universal approach toward curbing respiratory virus-causing pandemics. IMPORTANCE The COVID-19 pandemic exemplifies the severe public health threats of respiratory virus infection and influenza A viruses. The currently envisioned strategy for the prevention of respiratory virus-causing diseases requires the comprehensive administration of vaccines tailored for individual viruses. Here, we present an alternative strategy by designing chimpanzee adenovirus 68-based vaccines which target both the SARS-CoV-2 receptor-binding-domain and the conserved stalk of influenza hemagglutinin. When tested in mice, this strategy attained potent neutralizing antibodies against wild-type SARS-CoV-2 and its emerging variants, enabling an effective protection against lethal SARS-CoV-2 challenge. Notably, it also provided complete protection from lethal H7N9 challenge and efficient control of H3N2-induced morbidity. Our study opens a new avenue to universally curb respiratory virus infection by vaccination.
Assuntos
COVID-19/prevenção & controle , ChAdOx1 nCoV-19 , Subtipo H7N9 do Vírus da Influenza A/imunologia , Vacinas contra Influenza , Infecções por Orthomyxoviridae/prevenção & controle , SARS-CoV-2/imunologia , Animais , COVID-19/epidemiologia , COVID-19/genética , COVID-19/imunologia , ChAdOx1 nCoV-19/genética , ChAdOx1 nCoV-19/imunologia , ChAdOx1 nCoV-19/farmacologia , Feminino , Células HEK293 , Humanos , Subtipo H7N9 do Vírus da Influenza A/genética , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Vacinas contra Influenza/farmacologia , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos ICR , Camundongos Transgênicos , Infecções por Orthomyxoviridae/epidemiologia , Infecções por Orthomyxoviridae/genética , Infecções por Orthomyxoviridae/imunologia , Pandemias , SARS-CoV-2/genéticaRESUMO
Suppressing persistent multidrug-resistant (MDR) bacterial infections and excessive inflammation is the key for treating chronic wounds. Therefore, developing a microenvironment-responsive material with good biodegradability, drug-loading, anti-infection, and anti-inflammatory properties is desired to boost the chronic wounds healing process; however, using ordinary assembly remains a defect. Herein, we propose a pH/enzyme dual-responsive polymyxin B (PMB) spatiotemporal-release hydrogel (GelMA/OSSA/PMB), namely, the amount of OSSA and PMB released from GelMA/OSSA/PMB was closely related the wound pH and the enzyme concentration changing. The GelMA/OSSA/PMB showed better biosafety than equivalent free PMB, owing to the controlled release of PMB, which helped kill planktonic bacteria and inhibit biofilm activity in vitro. In addition, the GelMA/OSSA/PMB exhibited excellent antibacterial and anti-inflammatory properties. A MDR Pseudomonas aeruginosa caused infection was effectively resolved by the GelMA/OSSA/PMB hydrogel in vivo, thereby significantly boosting wound closure during the inflammatory phase. Furthermore, GelMA/OSSA/PMB accelerated the sequential phases of wound repair.
Assuntos
Hidrogéis , Polimixina B , Polimixina B/farmacologia , Hidrogéis/química , Cicatrização , Antibacterianos/farmacologia , Antibacterianos/química , Anti-Inflamatórios/farmacologia , Concentração de Íons de HidrogênioRESUMO
Amidst progressive advancements in tissue engineering, there has been a significant enhancement in the efficacy of anti-inflammatory hydrogel dressings, addressing a myriad of clinical challenges on wound healing. A frequent complication during the initial stages of deep second-degree burn wound healing is the onset of an inflammatory storm, typically occurring without effective intervention. This event disrupts normal biological healing sequences, leading to undesirable regression. In response, we have customized a tunable, multidimensional anti-inflammatory hydrogel platform based on sulfated alginates (Algs), loaded with Prussian blue (PB) nanozymes. This platform competently eliminates surplus reactive oxygen species (ROS) present in the wound bed. Algs, functioning as a mimic of sulfated glycosaminoglycans (including heparin, heparan sulfate, and chondroitin sulfate) in the extracellular matrices (ECM), demonstrate a high affinity towards inflammatory chemokines such as interleukin-8 (IL-8) and monocyte chemotactic protein-1 (MCP-1). This affinity effectively impedes the infiltration of inflammatory cells into the wound. Concurrently, Algs markedly modulate the macrophage phenotype transition from M1 to M2. Ultimately, our potent anti-inflammatory hydrogels, which strategically target inflammatory chemokines, M1 macrophages, and ROS, successfully attenuate dysregulated hyperinflammation in wound sites. Precise immunomodulation administered to deep second-degree burn wounds in mice has demonstrated promotion of neovascular maturation, granulation tissue formation, collagen deposition, and wound closure. Our biomimetic hydrogels, therefore, represent a significant expansion in the repertoire of anti-inflammatory strategies available for clinical practice.
Assuntos
Queimaduras , Hidrogéis , Camundongos , Animais , Hidrogéis/uso terapêutico , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Alginatos , Sulfatos/uso terapêutico , Espécies Reativas de Oxigênio , Cicatrização , Queimaduras/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/uso terapêutico , Quimiocinas/uso terapêuticoRESUMO
OBJECTIVE: Serratia sp. S2 is a wild strain with chromium resistance and reduction ability. Chromium(VI) metabolic-protein-coding gene ChrA and ChrT were cloned from Serratia sp. S2, and ligated with prokaryotic expression vectors pET-28a (+) and transformed into E. coli BL21 to construct ChrA, ChrT and ChrAT engineered bacteria. By studying the characteristics of Cr(VI) metabolism in engineered bacteria, the function and mechanism of the sole expression and coexpression of ChrA and ChrT genes were studied. METHODS: Using Serratia sp. S2 genome as template, ChrA and ChrT genes were amplified by PCR, and prokaryotic expression vectors was ligated to form the recombinant plasmid pET-28a (+)-ChrA, pET-28a (+)-ChrT and pET-28a (+)-ChrAT, and transformed into E. coli BL21 to construct ChrA, ChrT, ChrAT engineered bacteria. The growth curve, tolerance, and reduction of Cr(VI), the distribution of intracellular and extracellular Cr, activity of chromium reductase and intracellular oxidative stress in engineered bacteria were measured to explore the metabolic characteristics of Cr(VI) in ChrA, ChrT, ChrAT engineered bacteria. RESULTS: ChrA, ChrT and ChrAT engineered bacteria were successfully constructed by gene recombination technology. The tolerance to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrA > ChrT > Control (P < 0.05), and the reduction ability to Cr(VI) was Serratia sp. S2 > ChrAT ≈ ChrT > ChrA (P < 0.05). The chromium distribution experiments confirmed that Cr(VI) and Cr(III) were the main valence states. Effect of electron donors on chromium reductase activity was NADPH > NADH > non-NAD(P)H (P < 0.05). The activity of chromium reductase increased significantly with NAD(P)H (P < 0.05). The Glutathione and NPSH (Non-protein Sulfhydryl) levels of ChrA, ChrAT engineered bacteria increased significantly (P < 0.05) under the condition of Cr(VI), but there was no significant difference in the indexes of ChrT engineered bacteria (P > 0.05). CONCLUSION: ChrAT engineered bacteria possesses resistance and reduction abilities of Cr(VI). ChrA protein endows the strain with the ability to resist Cr(VI). ChrT protein reduces Cr(VI) to Cr(III) by using NAD(P)H as electronic donor. The reduction process promotes the production of GSH, GSSG and NPSH to maintain the intracellular reduction state, which further improves the Cr(VI) tolerance and reduction ability of ChrAT engineered bacteria.
Assuntos
Proteínas de Bactérias/genética , Compostos de Cromo/metabolismo , Poluentes Ambientais/metabolismo , Genes Bacterianos , Proteínas de Membrana/genética , Microrganismos Geneticamente Modificados/genética , Serratia/genética , Biodegradação Ambiental , Escherichia coli/genética , Escherichia coli/metabolismo , Microrganismos Geneticamente Modificados/metabolismo , Modelos Teóricos , Oxirredução , Oxirredutases/metabolismo , Serratia/metabolismoRESUMO
OBJECTIVE: To find an efficient chromium (VI) resistance system, with a highly efficient, economical, safe, and environmentally friendly chromium-removing strain, ChrA, ChrB, and ChrAB fragments of the chromium (VI) resistance gene in Serratia sp. S2 were cloned, and their prokaryotic expression vectors were constructed and transformed into E. coli BL21. The anti-chromium (VI) capacity and characteristics of engineered bacteria, role of ChrA and ChrB genes in the anti-chromium (VI) processes, and the mechanism of chromium metabolism, were explored. METHODS: The PCR technique was used to amplify ChrA, ChrB, and ChrAB genes from the Serratia sp. S2 genome. ChrA, ChrB, and ChrAB genes were connected to the prokaryotic expression vector pET-28a and transferred into E. coli BL21 for prokaryotic expression. Cr-absorption and Cr-efflux ability of the engineered strains were determined. The effects of respiratory inhibitors and oxygenated anions on Cr-efflux of ChrA and ChrB engineered strains were explored. RESULTS: ChrA, ChrB, and ChrAB engineered strains were constructed successfully; there was no significant difference between the control strain and the ChrB engineered strain for Cr-metabolism (Pâ¯>â¯0.05). Cr-absorption and Cr-efflux of ChrA and ChrAB engineered strains were significantly stronger than the control strain (Pâ¯<â¯0.05). Oxyanions (sulfate and molybdate) and inhibitors (valinomycin and CN-) could significantly inhibit the Cr-efflux capacities of ChrA and ChrAB engineered strains (Pâ¯<â¯0.05), while NADPH could significantly promote such capacities (Pâ¯<â¯0.05). CONCLUSION: The Cr-transporter, encoded by ChrA gene, confer the ability to pump out intracellular Cr on ChrA and ChrAB engineered strains. The ChrB gene plays a positive regulatory role in ChrA gene regulation. The Cr-metabolism ability of the ChrAB engineered strain is stronger than the ChrA engineered strain. ChrA and ChrAB genes in the Cr-resistance system may involve a variety of mechanisms, such as sulfate ion channel and respiratory chain electron transfer.
Assuntos
Proteínas de Bactérias/genética , Cromo/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/genética , Serratia/genética , Clonagem Molecular , DNA Bacteriano/genética , Farmacorresistência Bacteriana/genética , Escherichia coli , Microrganismos Geneticamente Modificados/genética , Análise de Sequência de DNA , Serratia/efeitos dos fármacosRESUMO
BACKGROUND: Prototype foamy virus (PFV) is a member of the Spumaretrovirinae subfamily of retroviruses, which maintains lifelong latent infection while being nonpathogenic to their natural hosts. Autophagy is a cell-programmed mechanism that plays a pivotal role in controlling homeostasis and defense against exotic pathogens. However, whether autophagy is the mechanism for host defense in PFV infection has not been investigated. FINDINGS: Our results revealed that PFV infection induced the accumulation of autophagosomes and triggered complete autophagic flux in BHK-21 cells. PFV infection also altered endoplasmic reticulum (ER) homeostasis. The PERK, IRE1 and ATF6 pathways, all of which are components of the ER stress-related unfolded protein response (UPR), were activated in PFV-infected cells. In addition, accelerating autophagy suppressed PFV replication, and inhibition of autophagy promoted viral replication. CONCLUSIONS: Our data indicate that PFV infection can induce complete autophagy through activating the ER stress-related UPR pathway in BHK-21 cells. In turn, autophagy negatively regulates PFV replication.
Assuntos
Autofagia , Estresse do Retículo Endoplasmático , Interações Hospedeiro-Patógeno , Spumavirus/imunologia , Spumavirus/fisiologia , Resposta a Proteínas não Dobradas , Animais , Linhagem Celular , Cricetinae , Replicação ViralRESUMO
Enterovirus 71 (EV71) is a neurotropic virus that causes hand, foot and mouth disease (HFMD), occasionally leading to death. As a member of the RAS association domain family (RASSFs), RASSF4 plays important roles in cell death, tumor development and signal transduction. However, little is known about the relationship between RASSF4 and EV71. Our study reveals for the first time that RASSF4 promotes EV71 replication and then accelerates AKT phosphorylation inhibition in EV71-infected 293T cells, suggesting that RASSF4 may be a potential new target for designing therapeutic measures to prevent and control EV71 infection.
Assuntos
Enterovirus Humano A/fisiologia , Doença de Mão, Pé e Boca/virologia , Interações Hospedeiro-Patógeno , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Replicação Viral , Apoptose , Linhagem Celular , Doença de Mão, Pé e Boca/fisiopatologia , Humanos , FosforilaçãoRESUMO
A series of chiral praziquantel analogues were synthesized and evaluated against Schistosoma japonicum both in vitro and in vivo. All compounds exhibited low to considerable good activity in vivo. Remarkably, worm reduction rate of R-3 was 60.0% at a single oral dose of 200mg/kg against juvenile stage of Schistosoma japonicum. The target compounds displayed in vivo antischistosomal activity against both Schistosoma japonicum and Schistosoma mansoni. Furthermore, all R-isomers displayed stronger antischistosomal activity than S-isomers in vivo, indicating R-isomers were the active enantiomers, while S-isomers were less active ones. This structure activity relationship (SAR) could have important implications in further drug development for schistosomiasis.
Assuntos
Praziquantel/análogos & derivados , Praziquantel/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Animais , Relação Dose-Resposta a Droga , Estrutura Molecular , Praziquantel/síntese química , Praziquantel/química , Schistosoma japonicum/crescimento & desenvolvimento , Schistosoma mansoni/efeitos dos fármacos , Relação Estrutura-AtividadeRESUMO
Conventional wound dressings have poor tissue adhesion and mechanical stability, restricting their applications in dynamic motion environments. Tannic acid (TA) was ideal candidates for current dressing materials due to their well-known antioxidant and anti-inflammatory properties. However, the inevitable polymerization problem of TA limited the one-step synthesis of dressings. Herein, we reported a simple one-pot method to prepare double-network hydrogels containing N-acryloyl glycinamide (NAGA), N-hydroxyethyl acrylamide (HEAA) and TA. The resulting NHT hydrogel exhibited excellent tensile properties, fatigue resistance, and notch insensitivity to ensure mechanical stability under large deformation and stress in vitro. The NHT hydrogel also demonstrated room-temperature self-healing, broad adhesion to various substrates, synergistic swelling ability. In addition, catechol and benzene rings from TA helped shield against UV radiation and acted as free radical scavengers to relieve oxidative stress in wound damage. As a result, full-layer wounds in mice treated with NHT patches showed a higher healing rate, in which epithelialization was completed within 14 days. The integrated function enables hydrogel to maintain mechanical stability in dynamic motion environments with high strain and defects, with great potential for future clinical translation.
Assuntos
Hidrogéis , Taninos , Cicatrização , Hidrogéis/química , Hidrogéis/farmacologia , Hidrogéis/síntese química , Taninos/química , Taninos/farmacologia , Cicatrização/efeitos dos fármacos , Animais , Camundongos , Estresse Oxidativo/efeitos dos fármacos , Antioxidantes/farmacologia , Antioxidantes/química , Antioxidantes/síntese química , PolifenóisRESUMO
BACKGROUND: Surveillance approaches with high sensitivity and specificity for hepatocellular carcinoma (HCC) are still urgently needed. Previous studies have shown that methylation of GNB4 and Riplet can effectively diagnose HCC. AIMS: This study plan to analyze the performance of a blood test for detecting HCC using GNB4 and Riplet methylation. METHODS AND RESULTS: This study mainly investigated the analytical performance of the dual-target HCC blood test (DT-HBT), including cut-off value, limit of detection (LOD), precision, analytical specificity, and coincidence rate. In addition, the detection performance for HCC was validated in 1030 clinical plasma samples (214 HCC and 816 non-HCC). Plasma samples from 25 HCC patients after hepatectomy were collected to assess the feasibility of the kit for postoperative recurrence monitoring. All analytical performance of the DT-HBT met prespecified requirements. The LOD for GNB4, Riplet, and ß-actin was 1% methylation/100 copies/µL with cut-offs of 43, 43, and 35, respectively. The DT-HBT showed excellent precision, within 5% CV. It had a specificity of 91.5% for detecting other cancers, and 100% for breast, lung, and bladder cancer. No cross-reactions were observed with 9 potential interfering substances. The DT-HBT achieved a 100% coincidence rate in detecting reference and clinical samples. The clinical performance study found that the kit showed a sensitivity of 81.7% for stage I HCC, and an overall sensitivity and specificity of 87.4% and 92.3%, respectively. The detection sensitivity for postoperative recurrent patients was 95.8%, with a specificity of 100%. CONCLUSION: The analytical performance of the DT-HBT met prespecified criteria. It provided HCC patients with a reliable and high-performing new blood test for the HCC diagnosis and surveillance. TRIAL REGISTRATION: ClinicalTrials.gov identifier: NCT05685524.
Assuntos
Biomarcadores Tumorais , Carcinoma Hepatocelular , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/sangue , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/sangue , Feminino , Masculino , Pessoa de Meia-Idade , Biomarcadores Tumorais/sangue , Idoso , Adulto , Metilação de DNA , Sensibilidade e Especificidade , Hepatectomia , Limite de Detecção , SeptinasRESUMO
Background: Aberrant DNA methylation patterns play a critical role in the development of hepatocellular carcinoma (HCC). However, the molecular mechanisms associated with these aberrantly methylated genes remain unclear. This study aimed to comprehensively investigate the methylation-driven gene expression alterations in HCC using a multi-omics dataset. Methods: Whole genome bisulfite sequencing (WGBS) and RNA sequencing (RNA-seq) techniques were used to assess the methylation and gene expression profiles of HCC tissues (HCCs) and normal adjacent tissues (NATs). The candidate genes' potential function was further investigated using single-cell RNA sequencing (scRNA seq) data. Results: We observed widespread hypomethylation in HCCs compared to NATs. Methylation levels in distinct genomic regions exhibited significant differences between HCCs and NATs. We identified 247,632 differentially methylated regions (DMRs) and 4,926 differentially expressed genes (DEGs) between HCCs and NATs. Integrated analysis of DNA methylation and RNA-seq data identified 987 methylation-driven candidate genes, with 970 showing upregulation and 17 showing downregulation. Four genes involved in the retinol metabolic pathway, namely ADH1A, CYP2A6, CYP2C8, and CYP2C19, were identified as hyper-downregulated genes. Their expression levels could stratify HCCs into three subgroups with distinct survival outcomes, immune cell infiltration, and tumor microenvironments. Validation of these findings in an independent dataset yielded similar outcomes, confirming the high concordance and potential prognostic value of these genes. ScRNA seq data revealed the low expression of these genes in immune cells, emphasizing their role in promoting malignant cell proliferation and migration. In conclusion, this study provides insights into the molecular characteristics of HCC, revealing the involvement of retinol metabolism-related genes in the development and progression of HCC. These findings have implications for HCC diagnosis, prognosis prediction, and the development of therapeutic targets.
Assuntos
Carcinoma Hepatocelular , Metilação de DNA , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Neoplasias Hepáticas , Vitamina A , Humanos , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/metabolismo , Vitamina A/metabolismo , Feminino , MasculinoRESUMO
Early detection of hepatocellular carcinoma (HCC) can greatly improve the survival rate of patients. We aimed to develop a novel marker panel based on cell-free DNA (cfDNA) methylation for the detection of HCC. The differentially methylated CpG sites (DMCs) specific for HCC blood diagnosis were selected from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, then validated by the whole genome bisulphite sequencing (WGBS) of 12 paired HCC and paracancerous tissues. The clinical performance of the panel was evaluated using tissue samples [32 HCC, chronic liver disease (CLD), and healthy individuals] and plasma cohorts (173 HCC, 199 CLD, and 98 healthy individuals). The combination of G protein subunit beta 4 (GNB4) and Riplet had the optimal area under the curve (AUC) in seven candidates through TCGA, GEO, and WGBS analyses. In tissue validation, the GNB4 and Riplet showed an AUC of 100% with a sensitivity and specificity of 100% for detecting any-stage HCC. In plasma, it demonstrated a high sensitivity of 84.39% at 91.92% specificity, with an AUC of 92.51% for detecting any-stage HCC. The dual-marker panel had a higher sensitivity of 78.26% for stage I HCC than alpha-fetoprotein (AFP) of 47.83%, and a high sensitivity of 70.27% for detecting a single tumour (size ≤3 cm). In conclusion, we developed a novel dual-marker panel that demonstrates high accuracy in detecting HCC, surpassing the performance of AFP testing.
Assuntos
Carcinoma Hepatocelular , Subunidades beta da Proteína de Ligação ao GTP , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/diagnóstico , Carcinoma Hepatocelular/genética , alfa-Fetoproteínas/análise , alfa-Fetoproteínas/genética , alfa-Fetoproteínas/metabolismo , Neoplasias Hepáticas/diagnóstico , Neoplasias Hepáticas/genética , Biomarcadores Tumorais/metabolismo , Metilação de DNA , Subunidades beta da Proteína de Ligação ao GTP/genética , Subunidades beta da Proteína de Ligação ao GTP/metabolismoRESUMO
Analogues of pyrrolo-[1,2,5]benzothiadiazepine were prepared and evaluated against Schistosoma japonica. The biological data revealed that most benzothiazepine derivatives show anti-schistosomal activity to some extent, while α-chloronation of the title compound and another bioisosteric derivative pyrrolo-[1,2,5]benzodiazepine displayed the most distinct worm killing activity. This study proved that benzodiazepine may serve as a novel structural skeleton for the development of anti-schistosomal agents.
Assuntos
Desenho de Fármacos , Pirróis/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Tiazepinas/farmacologia , Animais , Estrutura Molecular , Pirróis/síntese química , Pirróis/química , Relação Estrutura-Atividade , Tiazepinas/síntese química , Tiazepinas/químicaRESUMO
Maintaining cellular calcium (Ca2+) homeostasis is essential for many aspects of cellular life. The high-osmolarity glycerol (HOG) mitogen-activated protein kinase (MAPK) pathway responsible for signal integration and transduction plays crucial roles in environmental adaptation, especially in the response to osmotic stress. Hog1 is activated by transient Ca2+ increase in yeast, but the functions of the HOG pathway in Ca2+ homeostasis are largely unknown. We found that the HOG pathway was involved in the regulation of Ca2+ homeostasis in Fusarium graminearum, a devastating fungal pathogen of cereal crops. The deletion mutants of HOG pathway displayed increased sensitivity to Ca2+ and FK506, and elevated intracellular Ca2+ content. Ca2+ treatment induced the phosphorylation of FgHog1, and the phosphorylated FgHog1 was transported into the nucleus by importin ß FgNmd5. Moreover, the increased phosphorylation and nuclear accumulation of FgHog1 upon Ca2+ treatment is independent of the calcineurin pathway that is conserved and downstream of the Ca2+ signal. Taken together, this study reported the novel function of FgHog1 in the regulation of Ca2+ homeostasis in F. graminearum, which advance the understanding of the HOG pathway and the association between the HOG and calcineurin pathways in fungi.
RESUMO
BACKGROUND: Praziquantel (PZQ) has been the first line antischistosomal drug for all species of Schistosoma, and the only available drug for schistosomiasis japonica, without any alternative drugs since the 1980s. However, PZQ cannot prevent reinfection, and cannot cure schistosomiasis thoroughly because of its poor activity against juvenile schistosomes. In addition, reliance on a single drug is extremely dangerous, the development and spread of resistance to PZQ is becoming a great concern. Therefore, development of novel drug candidates for treatment and control of schistosomiasis is urgently needed. METHODOLOGYS/PRINCIPAL FINDINGS: One of the PZQ derivative christened P96 with the substitution of cyclohexyl by cyclopentyl was synthesized by School of Pharmaceutical Sciences of Shandong University. We investigated the in vitro and in vivo activities of P96 against different developmental stages of S. japonicum. Parasitological studies and scanning electron microscopy were used to study the primary action characteristics of P96 in vitro. Both mouse and rabbit models were employed to evaluate schistosomicidal efficacy of P96 in vivo. Besides calculation of worm reduction rate and egg reduction rate, quantitative real-time PCR was used to evaluate the in vivo antischistosomal activity of P96 at molecular level. In vitro, after 24h exposure, P96 demonstrated the highest activities against both juvenile and adult worm of S. japonicum in comparison to PZQ. The antischistosomal efficacy was concentration-dependent, with P96 at 50µM demonstrating the most evident schistosomicidal effect. Scanning electron microscopy demonstrated that P96 caused more severe damages to schistosomula and adult worm tegument compared to PZQ. In vivo, our results showed that P96 was effective against S. japonicum at all developmental stages. Notably, its efficacy against young stage worms was significantly improved compared to PZQ. Moreover, P96 retained the high activity comparable to PZQ against the adult worm of S. japonicum. CONCLUSIONS: P96 is a promising drug candidate for chemotherapy of schistosomiasis japonica, which has broad spectrum of action against various developmental stage, potentially addressing the deficiency of PZQ. It might be promoted as a drug candidate for use either alone or in combination with PZQ for the treatment of schistosomiasis.
Assuntos
Praziquantel , Esquistossomose Japônica , Esquistossomicidas , Animais , Camundongos , Coelhos , Microscopia Eletrônica de Varredura , Praziquantel/análogos & derivados , Praziquantel/farmacologia , Schistosoma japonicum/efeitos dos fármacos , Esquistossomose Japônica/tratamento farmacológico , Esquistossomicidas/farmacologiaRESUMO
Background: Multidrug-resistant (MDR) gram-negative bacteria-related infectious diseases have caused an increase in the public health burden and mortality. Moreover, the formation of biofilms makes these bacteria difficult to control. Therefore, developing novel interventions to combat MDR gram-negative bacteria and their biofilms-related infections are urgently needed. The purpose of this study was to develop a multifunctional nanoassembly (IRNB) based on IR-780 and N, N'-di-sec-butyl-N, N'- dinitroso-1,4-phenylenediamine (BNN6) for synergistic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. Methods: The characterization and bacteria-targeting ability of IRNB were investigated. The bactericidal efficacy of IRNB against gram-negative bacteria and their biofilms was demonstrated by crystal violet staining assay, plate counting method and live/dead staining in vitro. The antibacterial efficiency of IRNB was examined on a subcutaneous abscess and cutaneous infected wound model in vivo. A cell counting kit-8 assay, Calcein/PI cytotoxicity assay, hemolysis assay and intravenous injection assay were performed to detect the biocompatibility of IRNB in vitro and in vivo. Results: Herein, we successfully developed a multifunctional nanoassembly IRNB based on IR-780 and BNN6 for synergistic photothermal therapy (PTT), photodynamic therapy (PDT) and nitric oxide (NO) effect triggered by an 808 nm laser. This nanoassembly could accumulate specifically at the infected sites of MDR gram-negative bacteria and their biofilms via the covalent coupling effect. Upon irradiation with an 808 nm laser, IRNB was activated and produced both reactive oxygen species (ROS) and hyperthermia. The local hyperthermia could induce NO generation, which further reacted with ROS to generate ONOO-, leading to the enhancement of bactericidal efficacy. Furthermore, NO and ONOO- could disrupt the cell membrane, which converts bacteria to an extremely susceptible state and further enhances the photothermal effect. In this study, IRNB showed a superior photothermal-photodynamic-chemo (NO) synergistic therapeutic effect on the infected wounds and subcutaneous abscesses caused by gram-negative bacteria. This resulted in effective control of associated infections, relief of inflammation, promotion of re-epithelization and collagen deposition, and regulation of angiogenesis during wound healing. Moreover, IRNB exhibited excellent biocompatibility, both in vitro and in vivo. Conclusions: The present research suggests that IRNB can be considered a promising alternative for treating infections caused by MDR gram-negative bacteria and their biofilms.
RESUMO
Hydrogels have become an attractive option for tissue repair. A novel multifunctional hydrogel was developed using a two-step method involving photopolymerization and tannic acid (TA) solution incubation. The mechanical properties of this hydrogel were enhanced by the multi-hydrogen bond interaction between the TA and N-acryloyl glycinamide/gelatin methacrylate (NAGA/GelMA). The compressive modulus was doubled. The compressive strengths of the hydrogel were 5.5 MPa. The swelling rate was reduced by a factor of three. The adhesion strength of the composite hydrogel reached 80 KPa. The TA-mediated NAGA/GelMA/Laponite composite hydrogel exhibited excellent anti-fatigue and anti-oxidation properties, as well as printability. In vitro experiments indicated that the TA-mediated hydrogel facilitated the proliferation of bone marrow mesenchymal stem cells and osteogenic and chondrogenic differentiation. The developed multifunctional composite hydrogel has great potential for osteochondral defect repair under osteoarthritis conditions.
RESUMO
Wound healing and angiogenesis remain challenges for both clinical and experimental research worldwide. Periosteum-derived extracellular vesicles (P-sEVs) delivered by hydrogel dressings provide a potential strategy for wound defects to promote fast healing. In this study, we designed a NAGA/GelMA/Laponite/glycerol hydrogel wound dressing that can release P-sEVs to accelerate angiogenesis and wound healing (named P-sEVs@hydrogel) (N-acryloyl glycinamide, NAGA). The wound dressing showed multiple functions, including efficient angiogenesis, tissue adhesion and a physical barrier. P-sEVs significantly enhanced the proliferation, migration, and tube formation of endothelial cells in vitro. The results of in vivo experiments showed that P-sEVs@hydrogel accelerates the healing of a full-thickness defect wound model by stimulating the angiogenic process. The improved cell proliferation, tissue formation, remodeling, and re-epithelialization possibly resulted in the fast healing. This study shows that multifunctional hydrogel dressing combined with bioactive molecules can achieve fast and satisfactory wound healing in full-thickness wound defects and other related wounds.
RESUMO
Frequent dressing changes can result in secondary wound damage. Therefore, it is of great significance to construct a wound dressing that can be used for a long time without changing. Here, a double-network hydrogel was synthesized through hydrogen bonding interactions of tea polyphenol (TP)/glycerol with photo-crosslinked N-acryloyl glycinamide (NAGA), gelatin methacrylate (GelMA), and nanoclay hydrogel. The glycerol/water solvent slowed the diffusion of TP into the NAGA/GelMA/Laponite (NGL)hydrogel, thereby avoiding excessive crosslinking, and forming a uniform network. The hydrogel exhibited excellent water retention (84% within 28 days). Additionally, due to the hygroscopicity of glycerol, the hydrogel's mechanical strength (0.73-1.14 MPa) and tensile strain (207%-353%) increased further after 14 days in an open environment. Additionally, the hydrogel exhibited superior anti-ultraviolet and antioxidant properties, which effectively alleviated the wound site's oxidative stress and accelerated wound healing. Moreover, antibacterial activity was observed against both E. coli and S. aureus in the hydrogel wound dressing. Thus, by promoting wound closure, angiogenesis and collagen deposition, the double-network NGLG20/TG hydrogel dressing can successfully accelerate wound healing. The multifunctional double-network hydrogel, therefore, shows immense potential as an ideal candidate for wound dressings because it is long-lasting and prevents secondary damage caused by frequent dressing changes.
Assuntos
Antioxidantes , Hidrogéis , Antibacterianos/farmacologia , Antioxidantes/farmacologia , Escherichia coli , Gelatina , Glicerol , Hidrogéis/farmacologia , Metacrilatos , Polifenóis/farmacologia , Staphylococcus aureus , Chá , Água , CicatrizaçãoRESUMO
Hydrogels are promising and widely utilized in the biomedical field. In recent years, the anti-inflammatory function of hydrogel dressings has been significantly improved, addressing many clinical challenges presented in ongoing endeavours to promote wound healing. Wound healing is a cascaded and highly complex process, especially in chronic wounds, such as diabetic and severe burn wounds, in which adverse endogenous or exogenous factors can interfere with inflammatory regulation, leading to the disruption of the healing process. Although insufficient wound inflammation is uncommon, excessive inflammatory infiltration is an almost universal feature of chronic wounds, which impedes a histological repair of the wound in a predictable biological step and chronological order. Therefore, resolving excessive inflammation in wound healing is essential. In the past 5 years, extensive research has been conducted on hydrogel dressings to address excessive inflammation in wound healing, specifically by efficiently scavenging excessive free radicals, sequestering chemokines and promoting M1 -to-M2 polarization of macrophages, thereby regulating inflammation and promoting wound healing. In this study, we introduced novel anti-inflammatory hydrogel dressings and demonstrated innovative methods for their preparation and application to achieve enhanced healing. In addition, we summarize the most important properties required for wound healing and discuss our analysis of potential challenges yet to be addressed.