Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Zhen Ci Yan Jiu ; 48(2): 158-64, 2023 Feb 25.
Artigo em Zh | MEDLINE | ID: mdl-36858412

RESUMO

OBJECTIVE: To observe the protective effect of electroacupuncture (EA) on the intestinal mucosal barrier and its relationship with the Notch/NF-κB signaling pathway in mice with ulcerative colitis (UC), so as to explore its mechanism of treating UC. METHODS: Male C57BL/6J mice were randomized into control, model and EA groups, with 6 mice in each group. The UC model was established by giving the mice with 2% Dextran Sulfate Sodium (DSS) for 7 days. EA (2 Hz/15 Hz, 0.2 mA) was applied at bilateral "Zusanli" (ST36) for 30 min, once a day for 7 days. The disease activity indexes ï¼»DAI=(body weight index score+stool score+bleeding score)/3; 0-4 pointsï¼½ of mice were calculated. The morphological changes of colonic tissues of mice in each group were observed by HE staining, and serum contents of TNF-α and IL-6 were detected by ELISA. Claudin-1 protein expression in colon tissue was detected by immunofluorescence, while the protein expression levels of Muc-2, Notch-1, MMP-9 in colon tissue were detected by immunohistochemistry. The real-time PCR method was used to detect the expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in colon tissues. RESULTS: After modeling, the DAI, serum TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expression levels of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA in the colonic tissue were significantly increased (P<0.001, P<0.01) in the model group relevant to the control group. At the same time, Claudin-1 and Muc-2 protein expression were significantly reduced (P<0.01). After the EA intervention, the increased DAI score, TNF-α and IL-6 contents, Notch-1 and MMP-9 protein expression, the relative expressions of Notch-1, Hes-1, NF-κB, TLR-4 and AKT mRNA, and the decreased Claudin-1 and Muc-2 protein expression were all reversed compared with the model group (P<0.05, P<0.01, P<0.001). H.E. staining of the colonic tissue showed damage and infiltration of inflammatory cells in the model group, and those were significantly improved in the EA group. CONCLUSION: EA can promote the recovery of intestinal mucosal barrier function and reduce inflammatory reaction in UC mice, which may be associated with its effects in inhibiting the excessive activation of the Notch/NF-κB signaling pathway.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Masculino , Animais , Camundongos , Camundongos Endogâmicos C57BL , NF-kappa B , Metaloproteinase 9 da Matriz , Claudina-1 , Interleucina-6 , Proteínas Proto-Oncogênicas c-akt , Receptor 4 Toll-Like , Fator de Necrose Tumoral alfa , Transdução de Sinais
2.
Exp Biol Med (Maywood) ; 248(14): 1229-1241, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37438919

RESUMO

The aim of this study was to elucidate the key targets of acupuncture in the colon of ulcerative colitis (UC) mice model using full-length transcriptome sequencing. 2.5% dextran sodium sulfate (DSS)-induced colitis mice were treated with or without acupuncture. Intestinal pathology was observed, and full transcriptome sequencing and bioinformatic analysis were performed. The results demonstrated that acupuncture treatment reduced the UC symptoms, disease activity index score, and histological colitis score and increased body weight, colon length, and the number of intestinal goblet cells. In addition, acupuncture can also decrease the expression of necrotic biomarker phosphorylates mixed lineage kinase domain-like pseudo kinase (p-MLKL). Full-length transcriptome analysis indicated that acupuncture reversed the expression of 987 of the 1918 upregulated differentially expressed genes (DEGs), and 632 of the 1351 downregulated DEGs induced by DSS. DEGs regulated by acupuncture were mainly involved in inflammatory responses and intestinal barrier pathways. The protein-protein interaction network analysis revealed that matrix metalloproteinases (MMPs) are important genes regulated by acupuncture. Gene set enrichment analysis revealed that extracellular matrix (ECM)-receptor interaction was an important target of acupuncture. In addition, alternative splicing analysis suggested that acupuncture improved signaling pathways related to intestinal permeability, the biological processes of xenobiotics, sulfur compounds, and that monocarboxylic acids are closely associated with MMPs. Overall, our transcriptome analysis results indicate that acupuncture improves intestinal barrier function in UC through negative regulation of MMPs expression.


Assuntos
Terapia por Acupuntura , Colite Ulcerativa , Colite , Animais , Camundongos , Colite Ulcerativa/induzido quimicamente , Colite Ulcerativa/terapia , Colite Ulcerativa/metabolismo , Colite/induzido quimicamente , Colo/metabolismo , Metaloproteinases da Matriz/metabolismo , Sulfato de Dextrana/toxicidade , Modelos Animais de Doenças , Camundongos Endogâmicos C57BL
3.
Front Immunol ; 14: 1187574, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37727787

RESUMO

Background: We aimed to use transcriptomics, bioinformatics analysis, and core gene validation to identify the core gene and potential mechanisms for electroacupuncture (EA) treatment of ulcerative colitis (UC). Materials and methods: EA was performed in mice after induction of UC via dextran sodium sulfate. Body weight, disease activity index (DAI), colon length, and hematoxylin-eosin of the colon tissue were used to evaluate the effects of EA. Mice transcriptome samples were analyzed to identify the core genes, and further verified with human transcriptome database; the ImmuCellAI database was used to analyze the relationship between the core gene and immune infiltrating cells (IICs); and immunofluorescence was used to verify the results. Results: EA could reduce DAI and histological colitis scores, increase bodyweight and colon length, and improve the expression of local and systemic proinflammatory factors in the serum and colon of UC mice. Eighteen co-differentially expressed genes were identified by joint bioinformatics analyses of mouse and human transcriptional data; Cxcl1 was the core gene. EA affected IICs by inhibiting Cxcl1 expression and regulated the polarization of macrophages by affecting the Th1 cytokine IFN-γ, inhibiting the expression of CXCL1. Conclusions: CXCL1 is the target of EA, which is associated with the underlying immune mechanism related to Th1 cytokine IFN-γ.


Assuntos
Colite Ulcerativa , Eletroacupuntura , Humanos , Animais , Colite Ulcerativa/genética , Colite Ulcerativa/terapia , Transcriptoma , Citocinas , Peso Corporal , Quimiocina CXCL1
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA