Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Cytokine ; 178: 156591, 2024 06.
Artigo em Inglês | MEDLINE | ID: mdl-38554500

RESUMO

BACKGROUND: Fibroblast growth factor 21 (FGF21) is a secreted protein that plays an important role in atherosclerosis and pathological cardiac remodeling. However, the correlation between FGF21 and the degree of coronary artery stenosis and its potential role in acute myocardial infarction (AMI) remain unclear. We examined whether changes in FGF21 levels in AMI correlate with the degree of coronary artery stenosis and the levels of inflammatory factors, and preliminarily investigated the effects of FGF21 on inflammatory factor levels and myocardial injury in rats with AMI. METHODS: Serum levels of FGF21 and inflammatory factors in the AMI group and control group were measured, and the correlation between FGF21 and clinical indicators and inflammatory factors was analyzed. The effects of FGF21 on cardiac function and inflammatory response were evaluated through echocardiography and measurement of inflammatory factors. RESULTS: Multivariate logistic regression analysis showed that neutrophil percentage (NEUT%, odds ratio [OR]: 1.232; 95 % confidence interval [CI]: 1.028-1.477; p = 0.024) and FGF21 levels (OR: 2.063; 95 % CI: 1.187-3.586; p = 0.01) had independent effects on AMI. Spearman's rank correlation test showed that FGF21 levels were positively correlated with leukocyte count, NEUT%, neutrophil count, neutrophil to lymphocyte ratio, C-reactive protein, interleukin-6 (IL-6), tumor necrosis factor-α (TNF-α), monocyte chemotactic protein-1 (MCP-1) and Gensini scores (p < 0.01), but negatively correlated with lymphocyte count (p < 0.01). FGF21 levels in myocardial tissues and serum levels of FGF21, IL-6, TNF-a, and MCP-1 were significantly higher in AMI rats than in the sham-operated group (p < 0.01). After overexpression of FGF21, serum levels of IL-6, TNF-a, and MCP-1 in rats were significantly decreased (p < 0.01), and cardiac function improved significantly. CONCLUSIONS: FGF21 levels were independently associated with AMI and may be related to the severity of coronary artery stenosis. Overexpression of FGF21 reduced serum inflammatory factor levels and improved cardiac function in AMI rats.


Assuntos
Estenose Coronária , Infarto do Miocárdio , Humanos , Ratos , Animais , Interleucina-6 , Fatores de Crescimento de Fibroblastos , Estenose Coronária/complicações
2.
Pharmacol Res ; 185: 106480, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36191879

RESUMO

The development of gene-editing technology has been one of the biggest advances in biomedicine over the past two decades. Not only can it be used as a research tool to build a variety of disease models for the exploration of disease pathogenesis at the genetic level, it can also be used for prevention and treatment. This is done by intervening with the expression of target genes and carrying out precise molecular targeted therapy for diseases. The simple and flexible clustered regularly interspaced short palindromic repeats (CRISPR)/Cas9 gene-editing technology overcomes the limitations of zinc finger nucleases (ZFNs) and transcription activator-like effector nucleases (TALENs). For this reason, it has rapidly become a preferred method for gene editing. As a new gene intervention method, CRISPR/Cas9 has been widely used in the clinical treatment of tumours and rare diseases; however, its application in the field of cardiovascular diseases is currently limited. This article reviews the application of the CRISPR/Cas9 editing technology in cardiovascular disease research and treatment, and discusses the limitations and prospects of this technology.


Assuntos
Sistemas CRISPR-Cas , Doenças Cardiovasculares , Humanos , Doenças Cardiovasculares/genética , Doenças Cardiovasculares/terapia , Edição de Genes/métodos , Engenharia Genética/métodos
3.
ACS Appl Mater Interfaces ; 16(17): 21438-21449, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38626407

RESUMO

Thrombolytic therapy is one of the most effective treatments for thrombus dissolution and recanalization of blocked vessels in thrombotic diseases. However, the application of the thrombolytic strategy has been limited due to unsatisfactory thrombolytic efficacy, relatively higher bleeding complications, and consequently restricted indications. Recombinant staphylokinase (r-SAK) is a third-generation thrombolytic agent produced by genetic engineering technology, which exhibits a better thrombolytic efficacy than urokinase and recombinant streptokinase. Inspired by the natural affinity of platelets in hemostasis and pathological thrombosis, we developed a platelet membrane (PM)-coated r-SAK (PM-r-SAK). Results from animal experiments and human in vitro studies showed that the PM-r-SAK had a thrombolytic efficacy equal to or better than its 4-fold dose of r-SAK. In a totally occluded rabbit femoral artery thrombosis model, the PM-r-SAK significantly shortened the initial recanalization time compared to the same dose and 4-fold dose of r-SAK. Regarding the recanalized vessels, the PM-r-SAK prolonged the time of reperfusion compared to the same dose and 4-fold dose of r-SAK, though the differences were not significant. An in vitro thrombolytic experiment demonstrated that the thrombolytic efficacy of PM-r-SAK could be inhibited by platelet-poor plasma from patients taking aspirin and ticagrelor. PM coating significantly improves the thrombolytic efficacy of r-SAK, which is related to the thrombus-targeting activity of the PM-r-SAK and can be inhibited by aspirin- and ticagrelor-treated plasma.


Assuntos
Plaquetas , Fibrinolíticos , Metaloendopeptidases , Trombose , Animais , Coelhos , Humanos , Trombose/tratamento farmacológico , Plaquetas/efeitos dos fármacos , Plaquetas/metabolismo , Fibrinolíticos/química , Fibrinolíticos/uso terapêutico , Fibrinolíticos/farmacologia , Metaloendopeptidases/metabolismo , Terapia Trombolítica , Proteínas Recombinantes/uso terapêutico , Masculino , Membrana Celular/metabolismo , Membrana Celular/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA