RESUMO
KEY MESSAGE: Cathepsin B plays an important role that degrades the Rubisco large subunit RbcL in freezing stress. Programmed cell death (PCD) has been well documented in both development and in response to environmental stresses in plants, however, PCD induced by freezing stress and its molecular mechanisms remain poorly understood. In the present study, we characterized freezing-induced PCD and explored its mechanisms in Arabidopsis. PCD induced by freezing stress was similar to that induced by other stresses and senescence in Arabidopsis plants with cold acclimation. Inhibitor treatment assays and immunoblotting indicated that cathepsin B mainly contributed to increased caspase-3-like activity during freezing-induced PCD. Cathepsin B was involved in freezing-induced PCD and degraded the large subunit, RbcL, of Rubisco. Our results demonstrate an essential regulatory mechanism of cathepsin B for Rubisco degradation in freezing-induced PCD, improving our understanding of freezing-induced cell death and nitrogen and carbohydrate remobilisation in plants.
Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Catepsina B/metabolismo , Congelamento , Ribulose-Bifosfato Carboxilase/metabolismo , Apoptose , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismoRESUMO
Genipin, an aglycone of geniposide, is a rich iridoid component in the fruit of Gardenia jasminoides Ellis and has numerous biological activities. However, its metabolic profiles in vivo and vitro remain unclear. In this study, an effective analytical strategy based on ultra-high-performance liquid chromatography-high resolution mass spectrometry (UHPLC-HRMS) in positive and negative ion modes was developed to analyze and identify genipin metabolites in rat urine, blood, feces, and fecal fermentation in combination with many methods including post-collection data mining methods, high-resolution extracted ion chromatography (HREIC), and multiple mass defect filtering (MMDF). Simultaneously, the metabolites of genipin in vivo were verified by fecal fermentation of SD rats at different times. Finally, based on information such as reference substances, chromatographic retention behavior, and accurate mass determination, a total of 50 metabolites (including prototypes) were identified in vivo. Among them, 7, 31 and 28 metabolites in vivo were identified in blood, urine, and feces, respectively. Our results showed that genipin could generate different metabolites that underwent multiple metabolic reactions in vivo including methylation, hydroxylation, dehydroxylation, hydrogenation, sulfonation, glucuronidation, demethylation, and their superimposed reactions. Forty-six metabolites were verified in vitro. Meanwhile, 2 and 19 metabolites identified in blood and urine were also verified in fecal fermentation at different times. These results demonstrated that metabolites were produced in feces and reabsorbed into the body. In conclusion, the newly discovered metabolites of genipin can provide a new perspective for understanding its pharmacological effects and build the foundation for thee toxicity and safety evaluations of genipin.
Assuntos
Iridoides , Animais , Ratos , Ratos Sprague-Dawley , Cromatografia Líquida de Alta Pressão , Espectrometria de MassasRESUMO
Genistin, an isoflavone, has been reported to have multiple activities. However, its improvement of hyperlipidemia is still unclear, and the same is true with regard to its mechanism. In this study, a high-fat diet (HFD) was used to induce a hyperlipidemic rat model. The metabolites of genistin in normal and hyperlipidemic rats were first identified to cause metabolic differences with Ultra-High-Performance Liquid Chromatography Quadrupole Exactive Orbitrap Mass Spectrometry (UHPLC-Q-Exactive Orbitrap MS). The relevant factors were determined via ELISA, and the pathological changes of liver tissue were examined via H&E staining and Oil red O staining, which evaluated the functions of genistin. The related mechanism was elucidated through metabolomics and Spearman correlation analysis. The results showed that 13 metabolites of genistin were identified in plasma from normal and hyperlipidemic rats. Of those metabolites, seven were found in normal rat, and three existed in two models, with those metabolites being involved in the reactions of decarbonylation, arabinosylation, hydroxylation, and methylation. Three metabolites, including the product of dehydroxymethylation, decarbonylation, and carbonyl hydrogenation, were identified in hyperlipidemic rats for the first time. Accordingly, the pharmacodynamic results first revealed that genistin could significantly reduce the level of lipid factors (p < 0.05), inhibited lipid accumulation in the liver, and reversed the liver function abnormalities caused by lipid peroxidation. For metabolomics results, HFD could significantly alter the levels of 15 endogenous metabolites, and genistin could reverse them. Creatine might be a beneficial biomarker for the activity of genistin against hyperlipidemia, as revealed via multivariate correlation analysis. These results, which have not been reported in the previous literature, may provide the foundation for genistin as a new lipid-lowering agent.
Assuntos
Hiperlipidemias , Isoflavonas , Ratos , Animais , Cromatografia Líquida de Alta Pressão/métodos , Espectrometria de Massas , Metabolômica/métodos , LipídeosRESUMO
Interfacial evaporation has emerged as a promising approach to produce freshwater. However, an urgent concern is that, due to the illegal discharge of industrial wastewater, most water bodies are polluted by trace volatile organic compounds (VOCs), which are easily volatilized and enriched in the collected water during the interfacial evaporation process. Herein, a bilayer photothermal evaporator was reasonably designed for contaminated water purification. The bottom hydrophilic rGO-sodium alginate (SA) sheets purposefully disintegrate water transport channels, thus quickly removing VOCs through physical adsorption. The rGO-SA-TiO2 upper layer sufficiently absorbs incident light and therefore persistently generates reactive oxidizing species to degrade upward VOCs. Notably, the oriented microchannels inside the evaporator allow sustained light reflections to improve the utilization of solar energy. The evaporation rate can reach 1.63â kg m-2 â h-1 with a considerably high VOC removal efficiency of up to 96 %. Such an integrated bilayer evaporator provides an effective strategy to obtain clean water via solar distillation.
Assuntos
Grafite , Purificação da Água , Luz Solar , Águas ResiduáriasRESUMO
Background and aims: The increasing incidence of cardiovascular diseases has created an urgent need for safe and effective anti-thrombotic agents. Leech, as a traditional Chinese medicine, has the effect of promoting blood circulation and removing blood stasis, but its real material basis and mechanism of action for the treatment of diseases such as blood stasis and thrombosis have not been reported. Methods: In this study, Whitmania Pigra Whitman (WPW), Hirudo nipponica Whitman (HNW) and Whitmania acranutata Whitman (WAW) were hydrolyzed by biomimetic enzymatic hydrolysis to obtain the active peptides of WPW (APP), the active peptides of HNW (APH) and the active peptides of WAW (APA), respectively. Then their structures were characterized by sykam amino acid analyzer, fourier transform infrared spectrometer (FT-IR), circular dichroism (CD) spectrometer and LC-MS. Next, the anti-thrombotic activities of APP, APH and APA were determined by carrageenan-induced tail vein thrombosis model in mice, and the anti-thrombotic mechanisms of high-dose APP group (HAPP), high-dose APH group (HAPH) and high-dose APA group (HAPA) were explored based on UHPLC-Q-Exactive Orbitrap mass spectrometry. Results: The results showed that the amino acid composition of APP, APH and APA was consistent, and the proportion of each amino acid was few different. The results of FT-IR and CD showed that there were no significant differences in the proportion of secondary structures (such as ß-sheet and random coil) and infrared absorption peaks between APP, APH and APA. Mass spectrometry data showed that there were 43 common peptides in APP, APH and APA, indicating that the three have common material basis. APP, APH and APA could significantly inhibit platelet aggregation, reduce black-tail length, whole blood viscosity (WBV), plasma viscosity (PV), and Fibrinogen (FIB), and prolong coagulation time, including activated partial thrombin time (APTT), prothrombin time (PT) and thrombin time (TT). In addition, 24 metabolites were identified as potential biomarkers associated with thrombosis development. Among these, 19, 23, and 20 metabolites were significantly normalized after administration of HAPP, HAPH, and HAPA in the mice, respectively. Furthermore, the intervention mechanism of HAPP, HAPH and HAPA on tail vein thrombosis mainly involved in linoleic acid metabolism, primary bile acid biosynthesis and ether lipid metabolism. Conclusion: Our findings suggest that APP, APH and APA can exert their anti-blood stasis and anti-thrombotic activities by interfering with disordered metabolic pathways in vivo, and there is no significant difference in their efficacies.
RESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: Armeniacae Semen Amarum (Prunus armeniaca L. var. ansu Maxim., Ku xingren, bitter almond, ASA) is an important medicine in Traditional Chinese Medicine (TCM). It is widely used because of its remarkable curative effect in relieving cough and asthma, moistening intestines and defecating. AIM OF THE REVIEW: This review aims to enlighten the deeper knowledge about ASA, giving a comprehensive overview of its traditional uses, phytochemistry, pharmacology and toxicology for future investigation of plant-based drugs and therapeutic applications. MATERIALS AND METHODS: The databases used are Web of Science, PubMed, Baidu academic, Google academic, CNKI, Wanfang and VIP . In addition, detailed information on ASA was obtained from relevant monographs such as Chinese Pharmacopoeia. RESULTS: The active components of ASA mainly include amygdalin, bitter almond oil, essential oil, protein, vitamin, trace elements and carbohydrates. The pharmacological studies have shown that ASA has beneficial effects such as antitussive, antiasthmatic, anti-inflammatory, analgesic, antioxidant, antitumour, cardioprotective, antifibrotic, immune regulatory, bowel relaxation, insecticidal, etc. CONCLUSIONS: Many reports have been published on ASA's various active ingredients and biological uses. However, only a few reviews on its phytoconstituents and pharmacological uses. In addition, the exploration and development of ASA in other fields also deserve more attention in future research.
Assuntos
Amigdalina , Medicamentos de Ervas Chinesas , Sementes , Medicamentos de Ervas Chinesas/farmacologia , Medicina Tradicional Chinesa , Compostos Fitoquímicos/farmacologia , EtnofarmacologiaRESUMO
Forward osmosis (FO) driven by osmotic pressure difference has great potential in water treatment. However, it remains a challenge to maintain a steady water flux at continuous operation. Herein, a FO and photothermal evaporation (PE) coupling system (FO-PE) based on high-performance polyamide FO membrane and photothermal polypyrrole nano-sponge (PPy/sponge) is developed for continuous FO separation with a steady water flux. The PE unit with a photothermal PPy/sponge floating on the surface of draw solution (DS) can continuously in situ concentrate DS by solar-driven interfacial water evaporation, which effectively offsets the dilution effect due to the injected water from FO unit. A good balance between the permeated water in FO and the evaporated water in PE can be established by coordinately regulating the initial concentration of DS and light intensity. As a consequence, the polyamide FO membrane exhibits a steady water flux of 11.7 L m-2 h-1 over time under FO coupling PE condition, effectively alleviating the decline in water flux under FO alone. Additionally, it shows a low reverse salt flux of 3 g m-2 h-1. The FO-PE coupling system utilizing clean and renewable solar energy to achieve a continuous FO separation is significantly meaningful for practical applications.
RESUMO
Introduction: Iron deficiency anemia (IDA) is one of the most common nutritional diseases encountered all over the world. Nowadays, oral iron supplementation is still the mainstay of IDA treatment. Methods: In this study, a new iron nutritional supplement named pig skin collagen peptides ferrous chelates (PSCP-Fe) was prepared, and its structure was characterized by the scanning electron microscopy, sykam amino acid analyzer and Fourier transform infrared spectroscopy (FTIR). The anti-IDA activity of PSCP-Fe was evaluated in low-Fe2+ diet-induced IDA in rats. 16S amplicon sequencing technology was then used to reveal the mechanism of PSCP-Fe against IDA. Results: The results of amino acid analysis and FTIR showed that aspartic acid (Asp), arginine (Arg), histidine (His), glutamic acid (Glu), cystine (Cys), and lysine (Lys) residued in PSCP chelated readily with Fe2+ through their functional groups. PSCP-Fe treated reversed the hematology-related indexes, such as red blood cells (RBC), hemoglobin (HGB), hematocrit (HCT), mean corpuscular volume (MCV), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentrate (MCHC), serum ferritin (SF), serum hepcidin (HEPC) and serum transferrin receptor (TFR). And its regulatory action was better than that of FeSO4. Moreover, PSCP-Fe alleviated the hepatocyte apoptosis and necrosis, Fe2+ loss, and injury in IDA rats. In addition, PSCP-Fe could significantly retrace the disturbed profile of gut microbiota in IDA rats (p < 0.05) and significantly up-regulated the relative abundances of nine bacterial genus, including Lactobacillus, Alloprevotella, unclassified_of_Oscillospiraceae, and NK4A214_group (p < 0.05). It could also downgrade the relative abundances of Subdoligranulum and Coriobacteriaceae_UCG-002 (p < 0.05). The results of Spearman's correlation analysis and distance-based redundancy analysis (db-RDA) revealed that Subdoligranulum and Christensenellaceae_R-7_group may be potential microbial markers for effective PSCP-Fe action in the treatment of IDA. Discussion: Overall, our results elucidate the interactions between gut bacteria and related cytokines and reveal the mechanisms underlying the anti-IDA effect of PSCP-Fe. They will thus provide a theoretical foundation for PSCP-Fe as a new iron nutritional supplement.
RESUMO
Acorus calamus var. angustatus Besser (ATT) is a traditional herb with a long medicinal history. The volatile oil of ATT (VOA) does possess many pharmacological activities. It can restore the vitality of the brain, nervous system and myocardial cells. It is used to treat various central system, cardiovascular and cerebrovascular diseases. It also showed antibacterial and antioxidant activity. Many studies have explored the benefits of VOA scientifically. This paper reviews the extraction methods, chemical components, pharmacological activities and toxicology of VOA. The molecular mechanism of VOA was elucidated. This paper will serve as a comprehensive resource for further carrying the VOA on improving its medicinal value and clinical use.