Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 197
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(8): 104992, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37392848

RESUMO

Malignant hyperthermia susceptibility (MHS) is an autosomal dominant pharmacogenetic disorder that manifests as a hypermetabolic state when carriers are exposed to halogenated volatile anesthetics or depolarizing muscle relaxants. In animals, heat stress intolerance is also observed. MHS is linked to over 40 variants in RYR1 that are classified as pathogenic for diagnostic purposes. More recently, a few rare variants linked to the MHS phenotype have been reported in CACNA1S, which encodes the voltage-activated Ca2+ channel CaV1.1 that conformationally couples to RyR1 in skeletal muscle. Here, we describe a knock-in mouse line that expresses one of these putative variants, CaV1.1-R174W. Heterozygous (HET) and homozygous (HOM) CaV1.1-R174W mice survive to adulthood without overt phenotype but fail to trigger with fulminant malignant hyperthermia when exposed to halothane or moderate heat stress. All three genotypes (WT, HET, and HOM) express similar levels of CaV1.1 by quantitative PCR, Western blot, [3H]PN200-110 receptor binding and immobilization-resistant charge movement densities in flexor digitorum brevis fibers. Although HOM fibers have negligible CaV1.1 current amplitudes, HET fibers have similar amplitudes to WT, suggesting a preferential accumulation of the CaV1.1-WT protein at triad junctions in HET animals. Never-the-less both HET and HOM have slightly elevated resting free Ca2+ and Na+ measured with double barreled microelectrode in vastus lateralis that is disproportional to upregulation of transient receptor potential canonical (TRPC) 3 and TRPC6 in skeletal muscle. CaV1.1-R174W and upregulation of TRPC3/6 alone are insufficient to trigger fulminant malignant hyperthermia response to halothane and/or heat stress in HET and HOM mice.


Assuntos
Halotano , Resposta ao Choque Térmico , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta , Hipertermia Maligna , Animais , Camundongos , Cálcio/metabolismo , Halotano/farmacologia , Resposta ao Choque Térmico/genética , Hipertermia Maligna/genética , Hipertermia Maligna/metabolismo , Hipertermia Maligna/patologia , Músculo Esquelético/metabolismo , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Subunidades alfa do Canal de Potássio Ativado por Cálcio de Condutância Alta/genética
2.
BMC Plant Biol ; 24(1): 479, 2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38816690

RESUMO

The taxonomic classification of Picea meyeri and P. mongolica has long been controversial. To investigate the genetic relatedness, evolutionary history, and population history dynamics of these species, genotyping-by-sequencing (GBS) technology was utilized to acquire whole-genome single nucleotide polymorphism (SNP) markers, which were subsequently used to assess population structure, population dynamics, and adaptive differentiation. Phylogenetic and population structural analyses at the genomic level indicated that although the ancestor of P. mongolica was a hybrid of P. meyeri and P. koraiensis, P. mongolica is an independent Picea species. Additionally, P. mongolica is more closely related to P. meyeri than to P. koraiensis, which is consistent with its geographic distribution. There were up to eight instances of interspecific and intraspecific gene flow between P. meyeri and P. mongolica. The P. meyeri and P. mongolica effective population sizes generally decreased, and Maxent modeling revealed that from the Last Glacial Maximum (LGM) to the present, their habitat areas decreased initially and then increased. However, under future climate scenarios, the habitat areas of both species were projected to decrease, especially under high-emission scenarios, which would place P. mongolica at risk of extinction and in urgent need of protection. Local adaptation has promoted differentiation between P. meyeri and P. mongolica. Genotype‒environment association analysis revealed 96,543 SNPs associated with environmental factors, mainly related to plant adaptations to moisture and temperature. Selective sweeps revealed that the selected genes among P. meyeri, P. mongolica and P. koraiensis are primarily associated in vascular plants with flowering, fruit development, and stress resistance. This research enhances our understanding of Picea species classification and provides a basis for future genetic improvement and species conservation efforts.


Assuntos
Genoma de Planta , Picea , Polimorfismo de Nucleotídeo Único , Dinâmica Populacional , Picea/genética , Filogenia , Fluxo Gênico , Adaptação Fisiológica/genética , Ecossistema
3.
Molecules ; 29(5)2024 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-38474644

RESUMO

During the life activities of microorganisms, a variety of secondary metabolites are produced, including antimicrobials and antitumor drugs, which are widely used in clinical practice. In addition to exploring new antibiotics, this makes it one of the research priorities of Actinomycetes to effectively increase the yield of antibiotics in production strains by various means. Most antibiotic-producing strains have a variety of functional regulatory factors that regulate their growth, development, and secondary metabolite biosynthesis processes. Through the study of precursor substances in antibiotic biosynthesis, researchers have revealed the precursor biosynthesis process and the mechanism by which precursor synthesis regulators affect the biosynthesis of secondary metabolites, which can be used to obtain engineered strains with high antibiotic production. This paper summarizes the supply of antibiotic biosynthesis precursors and the progress of research on the role of regulators in the process of precursors in biosynthesis. This lays the foundation for the establishment of effective breeding methods to improve antibiotic yields through the manipulation of precursor synthesis genes and related regulators.


Assuntos
Actinobacteria , Antibacterianos , Antibacterianos/metabolismo , Actinobacteria/metabolismo , Actinomyces , Metabolismo Secundário
4.
J Sci Food Agric ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38828862

RESUMO

BACKGROUND: Gamma-aminobutyric acid (GABA) is an important neurotransmitter in the human body, with several negative emotions reported as being associated with GABA dysregulation. This study investigates the safety and modulatory effects of GABA-enriched milk, fermented by Streptococcus thermophilus GA8 and Lacticasebacillus rhamnosus HAO9, on the gut microbiota and neurotransmitter profiles in mice. RESULTS: Through rigorous culturing and fermentation processes, we achieved consistent GABA production in milk, with concentrations reaching 4.6 and 8.5 g L-1 for GA8-fermented and co-fermented milk, respectively, after 48 h. Using SPF male C57BL/6J mice, we administered either mono-culture or combined-culture milk treatments and monitored physiological impacts. The treatments did not affect mouse body weight but induced significant changes in gut microbiota composition. Beta diversity analysis revealed distinct microbial profiles between treatment groups, highlighting fermentation-specific microbial shifts, such as an increase in Verrucomicrobia for the GA8 group and a modulation in Saccharibacteria_genera_incertae_sedis for the GA8 + HAO9 group. Serum neurotransmitter levels were elevated in both treatment groups, with significant increases in l-glutamine, l-tryptophan and, notably, serotonin hydrochloride in the GA8 + HAO9 group. Correlation analysis identified a positive association between specific bacterial genera and neurotransmitter levels, suggesting a probiotic effect on neuroactive substances. CONCLUSION: These findings suggest that fermented milk has potential as a probiotic supplement for mood improvement and stress relief, highlighting its role in modulating the gut-brain axis. © 2024 Society of Chemical Industry.

5.
J Neuroinflammation ; 20(1): 113, 2023 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-37170230

RESUMO

Postoperative delirium (POD) is a frequent and debilitating complication, especially amongst high risk procedures, such as orthopedic surgery. This kind of neurocognitive disorder negatively affects cognitive domains, such as memory, awareness, attention, and concentration after surgery; however, its pathophysiology remains unknown. Multiple lines of evidence supporting the occurrence of inflammatory events have come forward from studies in human patients' brain and bio-fluids (CSF and serum), as well as in animal models for POD. ß-arrestins are downstream molecules of guanine nucleotide-binding protein (G protein)-coupled receptors (GPCRs). As versatile proteins, they regulate numerous pathophysiological processes of inflammatory diseases by scaffolding with inflammation-linked partners. Here we report that ß-arrestin1, one type of ß-arrestins, decreases significantly in the reactive astrocytes of a mouse model for POD. Using ß-arrestin1 knockout (KO) mice, we find aggravating effect of ß-arrestin1 deficiency on the cognitive dysfunctions and inflammatory phenotype of astrocytes in POD model mice. We conduct the in vitro experiments to investigate the regulatory roles of ß-arrestin1 and demonstrate that ß-arrestin1 in astrocytes interacts with the dynamin-related protein 1 (Drp1) to regulate mitochondrial fusion/fission process. ß-arrestin1 deletion cancels the combination of ß-arrestin1 and cellular Drp1, thus promoting the translocation of Drp1 to mitochondrial membrane to provoke the mitochondrial fragments and the subsequent mitochondrial malfunctions. Using ß-arrestin1-biased agonist, cognitive dysfunctions of POD mice and pathogenic activation of astrocytes in the POD-linked brain region are reduced. We, therefore, conclude that ß-arrestin1 is a promising target for the understanding of POD pathology and development of POD therapeutics.


Assuntos
Arrestinas , Delírio do Despertar , Humanos , Camundongos , Animais , Arrestinas/genética , Dinâmica Mitocondrial , Astrócitos/metabolismo , beta-Arrestinas/metabolismo , Dinaminas/metabolismo , Camundongos Knockout
6.
J Transl Med ; 21(1): 47, 2023 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-36698149

RESUMO

BACKGROUND: Genetic knowledge of gestational diabetes mellitus (GDM) in Chinese women is quite limited. This study aimed to identify the risk factors and mechanism of GDM at the genetic level in a Chinese population. METHODS: We conducted a genome-wide association study (GWAS) based on single nucleotide polymorphism (SNP) array genotyping (ASA-CHIA Bead chip, Illumina) and a case-cohort study design. Variants including SNPs, copy number variants (CNVs), and insertions-deletions (InDels) were called from genotyping data. A total of 2232 pregnant women were enrolled in their first/second trimester between February 2018 and December 2020 from Anqing Municipal Hospital in Anhui Province, China. The GWAS included 193 GDM patients and 819 subjects without a diabetes diagnosis, and risk ratios (RRs) and their 95% confidence intervals (CIs) were estimated by a regression-based method conditional on the population structure. The calling and quality control of genotyping data were performed following published guidelines. CNVs were merged into CNV regions (CNVR) to simplify analyses. To interpret the GWAS results, gene mapping and overexpression analyses (ORAs) were further performed to prioritize the candidate genes and related biological mechanisms. RESULTS: We identified 14 CNVRs (false discovery rate corrected P values < 0.05) and two suggestively significant SNPs (P value < 0.00001) associated with GDM, and a total of 19 candidate genes were mapped. Ten genes were significantly enriched in gene sets related to lipase (triglyceride lipase and lipoprotein lipase) activity (LIPF, LIPK, LIPN, and LIPJ genes), oxidoreductase activity (TPH1 and TPH2 genes), and cellular components beta-catenin destruction complex (APC and GSK3B genes), Wnt signalosome (APC and GSK3B genes), and lateral element in the Gene Ontology resource (BRCA1 and SYCP2 genes) by two ORA methods (adjusted P values < 0.05). CONCLUSIONS: Genes related to lipolysis, redox reaction, and proliferation of islet ß-cells are associated with GDM in Chinese women. Energy metabolism, particularly lipolysis, may play an important role in GDM aetiology and pathology, which needs further molecular studies to verify.


Assuntos
Diabetes Gestacional , Humanos , Feminino , Gravidez , Diabetes Gestacional/genética , Estudo de Associação Genômica Ampla , Estudos de Coortes , População do Leste Asiático , Lipólise , Polimorfismo de Nucleotídeo Único/genética
7.
Int Microbiol ; 2023 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-37946011

RESUMO

Various approaches have been used to study the relationship between prebiotics and probiotics. The utilization of different carbohydrates by probiotics depends on the biochemical properties of the enzymes and substrates required by the microbial strain. However, few studies have systematically analyzed the ability of probiotics to utilize different prebiotics. Here, we investigated the effects of prebiotics from different manufacturers on the proliferation of 13 strains of the Lactobacillus group and the genus Bifidobacterium co-cultured in vitro. Inulin, fructose-oligosaccharide (FOS), and galactose-oligosaccharide (GOS) had broad growth-promoting effects. FOS significantly promoted the proliferation of B. longum. When strains from Lactobacillus group and Bifidobacterium were co-cultured, FOS caused each strain to proliferate cooperatively. GOS was effectively used by L. rhamnosus and L. reuteri for energy and growth promotion. L. casei and L. paracasei fully metabolized inulin; these strains performed better than other strains from Lactobacillus group and Bifidobacterium. Media containing a mixture of oligosaccharides had stronger effects on the growth of B. animalis subsp. lactis, L. acidophilus, and L. rhamnosus than media containing single oligosaccharides. Thus, different oligosaccharides had different effects on the growth of probiotics, providing a scientific basis for the use of synbiotics in health and related fields.

8.
J Appl Microbiol ; 134(11)2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37930723

RESUMO

BACKGROUND: Alcoholic liver disease (ALD) is a chronic liver injury caused by excessive alcohol consumption, could be impacted by gut-liver axis dysfunction. The gut microbiota plays a crucial role in the development and progression of ALD. Given the role of gut-liver axis dysfunction in ALD, strategies targeting gut microbiota modulation have gained interest for therapeutic interventions. Bifidobacterium longum subsp. longum BL21 has shown promise in alleviating gut microbiota disturbances and metabolic regulation in high-fat diet-induced obesity and type 2 diabetes mellitus models. Thus, this study aimed to evaluate the therapeutic effect of BL21 on ALD mice and explore the potential mechanism by which the gut microbiota mediates the amelioration of ALD by BL21. METHODS: A total of 30 mice were randomly assigned to three groups (n = 10 mice/group): a healthy control (CTL) group, an ALD group, and a BL21 group. Each group was fed a Lieber-DeCarli liquid diet with (ALD and BL21) or without alcohol (CTL). The intervention period lasted 6 weeks, after which the effects of BL21 intervention (intragastric administration of 1 billion CFU of BL21 daily) on serum aspartate aminotransferase (AST) and alanine aminotransferase (ALT) levels, hepatic oxidative stress, serum inflammatory cytokine levels, and gut microbiota composition in ALD mice were investigated. RESULTS: Dietary BL21 reduced the ethanol-induced abnormal elevation of serum AST and ALT levels in ALD mice (P < 0.001 for both). BL21 treatment significantly attenuated alcohol-induced hepatic oxidative stress by decreasing malondialdehyde concentration and increasing superoxide dismutase, catalase, and glutathione concentrations in the livers of ALD mice. In addition, the serum levels of tumor necrosis factor-alpha, interleukin-1 beta (IL-1ß), and IL-6 were significantly lower (P < 0.001 for both), while that of IL-10 was significantly higher (P < 0.05), in the BL21 group than in the ALD group. Intestinal microbiota analysis showed an increased relative abundance of Escherichia/Shigella, Enterococcus, and Alistipes in the ALD group compared with the CTL group. BL21 intervention increased the relative abundance of Bifidobacterium and Akkermansia compared with the ALD group. CONCLUSION: Dietary BL21 ameliorates ALD via enhancement of the hepatic antioxidant capacity and modulation of the gut microbiota and may therefore be a promising strategy to prevent or treat ALD.


Assuntos
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Hepatopatias Alcoólicas , Camundongos , Animais , Antioxidantes/metabolismo , Hepatopatias Alcoólicas/prevenção & controle , Hepatopatias Alcoólicas/metabolismo , Hepatopatias Alcoólicas/microbiologia , Fígado , Bifidobacterium , Etanol/metabolismo , Camundongos Endogâmicos C57BL
9.
Int J Mol Sci ; 24(8)2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37108331

RESUMO

To evaluate the effects of donor ages on growth and stress resistance of 6-year-old seedlings propagated from 5-, 2000-, and 3000-year-old Platycladus orientalis donors with grafting, cutting, and seed sowing, growth indicators and physiological and transcriptomic analyses were performed in 6-year-old seedlings in winter. Results showed that basal stem diameters and plant heights of seedlings of the three propagation methods decreased with the age of the donors, and the sown seedlings were the thickest and tallest. The contents of soluble sugar, chlorophyll, and free fatty acid in apical leaves of the three propagation methods were negatively correlated with donor ages in winter, while the opposite was true for flavonoid and total phenolic. The contents of flavonoid, total phenolic, and free fatty acid in cutting seedlings were highest in the seedlings propagated in the three methods in winter. KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis of differentially expressed genes showed phenylpropanoid biosynthesis and fatty acid metabolism pathways, and their expression levels were up-regulated in apical leaves from 6-year-old seedlings propagated from 3000-year-old P. orientalis donors. In addition, hub genes analysis presented that C4H, OMT1, CCR2, PAL, PRX52, ACP1, AtPDAT2, and FAD3 were up-regulated in cutting seedlings, and the gene expression levels decreased in seedlings propagated from 2000- and 3000-year-old donors. These findings demonstrate the resistance stability of cuttings of P. orientalis and provide insights into the regulatory mechanisms of seedlings of P. orientalis propagated from donors at different ages in different propagation methods against low-temperature stress.


Assuntos
Plântula , Thuja , Plântula/metabolismo , Ácidos Graxos não Esterificados/metabolismo , Perfilação da Expressão Gênica , Clorofila/metabolismo , Thuja/genética , Regulação da Expressão Gênica de Plantas
10.
Environ Monit Assess ; 195(9): 1057, 2023 Aug 17.
Artigo em Inglês | MEDLINE | ID: mdl-37591945

RESUMO

Based on the Landsat normalized difference vegetation index (NDVI) and the NDVI product of MODIS, this study synthesized two kinds of time-series images. The features were selected according to the characteristics of the time series, and the random forest algorithm was used for classification. Based on the classification results and GIS spatial analysis, the temporal and spatial changes in vegetation cover in the Yellow River Delta from 2000 to 2020 were studied. The results showed that from 2000 to 2020, the vegetation first increased and then decreased, and the dynamic degree of land cover change was generally low. The monthly average minimum NDVI values during the vegetation growth period mostly occurred before 2010, and the maximum values occurred after 2010. From the spatial perspective, the average vegetation area of the Yellow River Delta accounted for 31.54% of the total study area; specifically, the spatial pattern of vegetation distribution was relatively fixed, and the fixed vegetation area accounted for 63.90% of the total vegetation area. The spatial distribution had significant differences, and the vegetation was distributed radially from the center of the Yellow River to the periphery, with significant fragmentation found outside the watershed. The Yellow River had a strong interference with vegetation growth, and the stable vegetation distribution areas were concentrated near the Yellow River. The correlation coefficient between vegetation distribution and the location of the Yellow River was - 0.9964.


Assuntos
Monitoramento Ambiental , Rios , Fatores de Tempo , Algoritmo Florestas Aleatórias , Análise Espacial
11.
J Asian Nat Prod Res ; 24(1): 52-58, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33511870

RESUMO

Mangrove endophytic fungi were proved to be a prolific resources for bioactive secondary metabolites. Two new polyketides, pestalotiopin B (1) and pestalotiopyrone N (2) were obtained from the ethyl acetate extracts of the rice solid cultures of the mangrove endophytic fungus Pestalotiopsis sp. HQD-6. The structures of 1 and 2 were determined by detailed interpretation of NMR spectroscopic analysis and HR-ESIMS. All of the isolates were evaluated for their antimicrobial, antioxidant and cytotoxic activities.


Assuntos
Policetídeos , Rhizophoraceae , China , Fungos , Estrutura Molecular , Pestalotiopsis , Policetídeos/farmacologia
12.
Dev Genes Evol ; 231(1-2): 11-19, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33244643

RESUMO

Germ cell-specific genes play an important role in establishing the reproductive system in sexual organisms and have been used as valuable markers for studying gametogenesis and sex differentiation. Previously, we isolated a vasa transcript as a germ cell marker to trace the origin and migration of germ cells in the oriental river prawn Macrobrachium nipponense. Here, we identified a new germ cell-specific marker MnTdrd RNA and assessed its temporal and spatial expression during oogenesis and embryogenesis. MnTdrd transcripts were expressed in high abundance in unfertilized eggs and embryos at cleavage stage and then dropped significantly during late embryogenesis, suggesting that MnTdrd mRNA is maternally inherited. In situ hybridization of ovarian tissue showed that MnTdrd mRNA was initially present in the cytoplasm of previtellogenic oocyte and localized to the perinuclear region as the accumulation of yolk in vitellogenic oocyte. Whole-mount in situ hybridization of embryos showed that MnTdrd-positive signals were only localized in one blastomere until 16-cell stage. In the blastula, there were approximately 16 MnTdrd-positive blastomeres. During embryonized-zoea stage, the MnTdrd-positive cells aggregated as a cluster and migrated to the genital rudiment which would develop into primordial germ cells (PGCs). The localized expression pattern of MnTdrd transcripts resembled that of the previously identified germ cell marker vasa, supporting the preformation mode of germ cell specification. Therefore, we concluded that MnTdrd, together with vasa, is a component of the germ plasm and might have critical roles in germ cell formation and differentiation in the prawn. Thus, MnTdrd can be used as a novel germ cell marker to trace the origin and migration of germ cells.


Assuntos
Linhagem da Célula , Células Germinativas/metabolismo , Palaemonidae/genética , Domínio Tudor , Animais , Blastômeros/metabolismo , Proteínas de Ciclo Celular/química , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Oócitos/metabolismo , Palaemonidae/citologia , Palaemonidae/crescimento & desenvolvimento
13.
J Transl Med ; 19(1): 366, 2021 08 26.
Artigo em Inglês | MEDLINE | ID: mdl-34446048

RESUMO

BACKGROUND: The causes of gestational diabetes mellitus (GDM) are still unclear. Recent studies have found that the imbalance of the gut microbiome could lead to disorders of human metabolism and immune system, resulting in GDM. This study aims to reveal the different gut compositions between GDM and normoglycemic pregnant women and find the relationship between gut microbiota and GDM. METHODS: Fecal microbiota profiles from women with GDM (n = 21) and normoglycemic women (n = 32) were assessed by 16S rRNA gene sequencing. Fasting metabolic hormone concentrations were measured using multiplex ELISA. RESULTS: Metabolic hormone levels, microbiome profiles, and inferred functional characteristics differed between women with GDM and healthy women. Additionally, four phyla and seven genera levels have different correlations with plasma glucose and insulin levels. Corynebacteriales (order), Nocardiaceae (family), Desulfovibrionaceae (family), Rhodococcus (genus), and Bacteroidetes (phylum) may be the taxonomic biomarkers of GDM. Microbial gene functions related to amino sugar and nucleotide sugar metabolism were found to be enriched in patients with GDM. CONCLUSION: Our study indicated that dysbiosis of the gut microbiome exists in patients with GDM in the second trimester of pregnancy, and gut microbiota might be a potential diagnostic biomarker for the diagnosis, prevention, and treatment of GDM.


Assuntos
Diabetes Gestacional , Microbioma Gastrointestinal , Glicemia , China , Feminino , Humanos , Gravidez , Segundo Trimestre da Gravidez , RNA Ribossômico 16S/genética
14.
Bioorg Med Chem ; 52: 116522, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34837819

RESUMO

Stroke is a major public health problem with an imperative need for a more effective and tolerated therapy. Neuroprotective therapy may be an effective therapeutic intervention for stroke. The morbidity and mortality of stroke-induced secondary brain injury is mainly caused by neuronal apoptosis, which can be executed in a caspase-dependent or apoptosis inducing factor (AIF)-dependent manner. As apoptosis is an energy-dependent process with a relative time delay, abnormal energy metabolism could be a significant and fundamental pathophysiological basis of stroke. To our knowledge, convincible evidences that AMPK inhibition exerts neuroprotection in cerebral ischemia injury via anti-apoptosis remain to be investigated. Accordingly, the aims of this study were to investigate the protective effects of AMPK inhibitor BML-275 on cerebral ischemic/reperfusion (I/R) injury and to elucidate the underlying mechanisms. Cerebral ischemia was induced by transient middle cerebral artery occlusion (tMCAO) in male C57BL/6 mice. The therapeutic effects of BML-275 were evaluated by infarct sizes, neurological scores and the proportion of apoptotic neurons after 24 h of reperfusion. The cell apoptosis markers cyt c and AIF were also evaluated. The results showed that intraperitoneally administration of BML-275 alleviate the cerebral infarction, neurological deficit and neuronal apoptosis induced by MCAO. BML-275 simultaneously induces anti-apoptosis and decreases the expression of cyt c and AIF. This study supports the hypothesis that anti-apoptosis is one of potential neuroprotective strategies for the treatment of stroke.


Assuntos
Proteínas Quinases Ativadas por AMP/antagonistas & inibidores , Fator de Indução de Apoptose/antagonistas & inibidores , Isquemia Encefálica/tratamento farmacológico , Citocromos c/antagonistas & inibidores , Fármacos Neuroprotetores/farmacologia , Pirazóis/farmacologia , Pirimidinas/farmacologia , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Apoptose/efeitos dos fármacos , Fator de Indução de Apoptose/genética , Fator de Indução de Apoptose/metabolismo , Isquemia Encefálica/metabolismo , Isquemia Encefálica/patologia , Citocromos c/genética , Citocromos c/metabolismo , Relação Dose-Resposta a Droga , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Fármacos Neuroprotetores/síntese química , Fármacos Neuroprotetores/química , Pirazóis/síntese química , Pirazóis/química , Pirimidinas/síntese química , Pirimidinas/química , Relação Estrutura-Atividade
15.
J Obstet Gynaecol Can ; 43(6): 726-732, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33303407

RESUMO

OBJECTIVE: Selective serotonin reuptake inhibitors (SSRIs) and serotonin-norepinephrine reuptake inhibitors (SNRIs) are the most commonly used medications for mood and anxiety disorders in women. Many women need to continue or initiate these medications during pregnancy, but there is concern about potential withdrawal effects in the newborn, referred to as neonatal abstinence syndrome (NAS). The reason why some infants remain asymptomatic while others are affected has not been elucidated. The objective of this study was to examine whether genetic differences in maternal drug metabolism influence the incidence of NAS. METHODS: Women who took Selective serotonin reuptake inhibitors s/SNRIs during pregnancy were recruited from obstetrical clinics. DNA was extracted from saliva samples for genetic analyses of cytochrome P450 (CYP) enzyme polymorphisms. Delivery and NAS data were collected from electronic medical records. RESULTS: Ninety-five women participated. The overall NAS rate was 16.2%. Mild NAS was seen in 13.8% of neonates and severe NAS, in 2%. One-quarter (25%) of the neonates with mild withdrawal symptoms were born to mothers with polymorphisms associated with slower metabolism of their particular antidepressant, but this association was not statistically significant. CONCLUSION: Importantly, the overall rate of NAS in our study was lower than previously reported. Maternal CYP polymorphisms did not affect the rate of NAS in neonates exposed to SSRIs/SNRIs in utero. This study lends added assurance to patients requiring SSRIs or SNRIs during pregnancy.


Assuntos
Antidepressivos/efeitos adversos , Síndrome de Abstinência Neonatal/epidemiologia , Síndrome de Abstinência Neonatal/psicologia , Farmacogenética , Complicações na Gravidez/tratamento farmacológico , Inibidores Seletivos de Recaptação de Serotonina/efeitos adversos , Antidepressivos/farmacologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Mães , Síndrome de Abstinência Neonatal/etiologia , Gravidez , Complicações na Gravidez/genética , Resultado da Gravidez , Efeitos Tardios da Exposição Pré-Natal/epidemiologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Resultado do Tratamento
16.
BMC Musculoskelet Disord ; 22(1): 674, 2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34376165

RESUMO

BACKGROUND: To summarize and analyze the epidemiological characteristics, treatment and corresponding curative effect of triradiate cartilage injury(TCI) in children after trauma, to provide a theoretical basis for early diagnosis and improvement of treatment. METHODS: The TCI was classified according to Bucholz classification, and the final curative effect was evaluated with Harris Hip Score and imaging examination during follow-up. Finally, a comprehensive analysis was made by reviewing the cases in the literature combined with the patients in our hospital. RESULTS: A total of 15 cases (18 hips) of triradiate cartilage injuries were collected in our hospital. There was 1 hip with type I injury, nine hips with type II injury, two hips with type IV injury, one hip with type V injury and five hips with type VI injury. Among the 12 cases with complete follow-up, the bone bridge was found in or around the triradiate cartilage in 8 cases, early fusion of triradiate cartilage occurred in 5 patients, 3 cases had hip dysplasia, 4 cases had a subluxation of the femoral head, and HHS was excellent in 8 cases and good in 4 cases. CONCLUSION: The early diagnosis of TCI is still a difficult problem. Conservative treatment is often the first choice. The overall prognosis of acetabular fractures involving triradiate cartilage is poor. The formation of the bone bridge in triradiate cartilage usually indicates the possibility of premature closure, which may lead to severe complications of post-traumatic acetabular dysplasia and subluxation of the femoral head.


Assuntos
Luxação do Quadril , Fraturas do Quadril , Acetábulo , Cartilagem , Criança , Humanos , Estudos Retrospectivos
17.
Mol Pharmacol ; 98(4): 351-363, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32764093

RESUMO

Ryanodine receptor (RYR) mutations confer stress-triggered malignant hyperthermia (MH) susceptibility. Dietary caffeine (CAF) is the most commonly consumed psychoactive compound by humans. CAF-triggered Ca2+ release and its influences on skeletal muscle contractility are widely used as experimental tools to study RYR function/dysfunction and diagnose MH susceptibility. We hypothesize that dietary CAF achieving blood levels measured in human plasma exacerbates the penetrance of RYR1 MH susceptibility mutations triggered by gaseous anesthetic, affecting both central and peripheral adverse responses. Heterozygous R163C-RYR1 (HET) MH susceptible mice are used to investigate the influences of dietary CAF on both peripheral and central responses before and after induction of halothane (HAL) maintenance anesthesia under experimental conditions that maintain normal core body temperature. HET mice receiving CAF (plasma CAF 893 ng/ml) have significantly shorter times to respiratory arrest compared with wild type, without altering blood chemistry or displaying hyperthermia or muscle rigor. Intraperitoneal bolus dantrolene before HAL prolongs time to respiratory arrest. A pilot electrographic study using subcutaneous electrodes reveals that dietary CAF does not alter baseline electroencephalogram (EEG) total power, but significantly shortens delay to isoelectric EEG, which precedes respiratory and cardiac arrest. CAF ± HAL are studied on RYR1 single-channel currents and HET myotubes to define molecular mechanisms of gene-by-environment synergism. Strong pharmacological synergism between CAF and HAL is demonstrated in both single-channel and myotube preparations. Central and peripheral nervous systems mediate adverse responses to HAL in a HET model of MH susceptibility exposed to dietary CAF, a modifiable lifestyle factor that may mitigate risks of acute and chronic diseases associated with RYR1 mutations. SIGNIFICANCE STATEMENT: Dietary caffeine at a human-relevant dose synergizes adverse peripheral and central responses to anesthesia in malignant hyperthermia susceptible mice. Synergism of these drugs can be attributed to their actions at ryanodine receptors.


Assuntos
Cafeína/efeitos adversos , Dantroleno/efeitos adversos , Halotano/efeitos adversos , Hipertermia Maligna/fisiopatologia , Fibras Musculares Esqueléticas/fisiologia , Mutação , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Cafeína/farmacologia , Dantroleno/administração & dosagem , Modelos Animais de Doenças , Sinergismo Farmacológico , Eletroencefalografia/instrumentação , Feminino , Halotano/administração & dosagem , Heterozigoto , Humanos , Injeções Intraperitoneais , Masculino , Hipertermia Maligna/genética , Camundongos , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo
18.
Anal Biochem ; 602: 113796, 2020 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-32485162

RESUMO

TRF2 is a telomere associated protein which plays an important role in telomere maintenance. Knockdown of TRF2 can cause chromosomal end to end fusions and induce DNA damage responses. TRF2 exerts its functions partially by recruiting a number of accessory proteins through its TRF homology domain (TRFH), therefore identification of small molecular compounds which can bind to the TRFH domain of TRF2 and block the interactions of TRF2 with its associated proteins is important to elucidate the molecular mechanism of these protein-protein interactions. Development of robust and sensitive screening and evaluation assays is critical to the identification of TRF2 inhibitors, in this paper we reported the development and optimization of a cascade of screening and binding affinity evaluation assays, including a competitive FP (Fluorescence Polarization) assay utilized in our previous research, and two novel label-free DSF (Differential Scanning Fluorescence) and BLI (Biolayer Interferometry) assays. A previously identified TRF2 inhibitor TRF2-27 was used as an internal reference compound and evaluated in all of these assays. According to the results, DSF assay is not suitable for TRF2 screening because of the low ΔTm, while the optimized labeled-free BLI assay was demonstrated to be an accurate and reproducible assay for TRF2 inhibitor screening and characterization.


Assuntos
Avaliação Pré-Clínica de Medicamentos , Peptídeos/farmacologia , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Polarização de Fluorescência , Humanos , Conformação Molecular , Peptídeos/química , Proteína 2 de Ligação a Repetições Teloméricas/metabolismo
19.
Bioorg Med Chem Lett ; 30(21): 127401, 2020 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-32871539

RESUMO

Telomeric repeat binding factor 2 (TRF2) plays an important role in protecting telomeres from being recognized as DNA breaks. TRF2 performs its telomere protecting functions partially by recruiting a number of accessory proteins to telomeres through its TRF homology (TFRH) domain. Identification of small molecular compounds which can bind to the TRFH domain of TRF2 and block the interactions between TRF2 and its associated proteins is crucial for elucidating the molecular mechanisms of these protein-protein interactions. Using a previously identified peptidic mimetic of ApolloTBM as a lead compound, we designed and synthesized a series of novel TRF2 inhibitors by non-peptidic modifications of the N-terminal residues. These compounds can maintain the binding affinities to TRF2 but have much reduced peptidic characteristics compared to the lead compound.


Assuntos
Peptídeos Cíclicos/farmacologia , Proteína 2 de Ligação a Repetições Teloméricas/antagonistas & inibidores , Relação Dose-Resposta a Droga , Humanos , Modelos Moleculares , Estrutura Molecular , Peptídeos Cíclicos/síntese química , Peptídeos Cíclicos/química , Relação Estrutura-Atividade
20.
Med Sci Monit ; 26: e922486, 2020 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-32520926

RESUMO

BACKGROUND Dysregulated long noncoding RNAs (lncRNAs) are implicated in periodontitis development. Nevertheless, the role and mechanism of lncRNA maternally-expressed gene 3 (MEG3) in periodontitis progression remain unclear. This study aimed to explore how and whether MEG3 affect viability, apoptosis, and inflammatory response in lipopolysaccharide (LPS)-treated periodontal ligament cells (PDLCs). MATERIAL AND METHODS Periodontal ligament tissues were collected from periodontitis patients or normal individuals. PDLCs were obtained from normal periodontal ligament and treated with lipopolysaccharide (LPS). LPS-induced PDLCs injury was assessed via viability, apoptosis and inflammatory response using Cell Counting Kit-8, flow cytometry, quantitative reverse transcription polymerase chain reaction, enzyme-linked immunosorbent assay, and Western blot. The levels of MEG3 and microRNA (miR)-143-3p were examined via quantitative reverse transcription polymerase chain reaction. The protein kinase B(AKT)/inhibitory kappaB kinase (IKK) pathway was analyzed via Western blot. The target correlation of MEG3 and miR-143-3p was determined through dual-luciferase reporter analysis. RESULTS MEG3 level was decreased and miR-143-3p level was upregulated in periodontitis and LPS-treated PDLCs. MEG3 overexpression or miR-143-3p knockdown alleviated LPS-induced viability inhibition, apoptosis promotion, and inflammatory response. MEG3 was a sponge for miR-143-3p. miR-143-3p overexpression weakened the effect of MEG3 on LPS-induced injury. MEG3 overexpression inhibited the activation of AKT/IKK pathway by sponging miR-143-3p in LPS-treated PDLCs. CONCLUSIONS MEG3 overexpression inhibited LPS-induced injury in PDLCs by inactivating the AKT/IKK pathway via sponging miR-143-3p, providing a potential target for treatment of periodontitis.


Assuntos
MicroRNAs/genética , Periodontite/genética , RNA Longo não Codificante/genética , Adulto , Apoptose/efeitos dos fármacos , Proteínas Reguladoras de Apoptose/metabolismo , Povo Asiático/genética , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Feminino , Humanos , Quinase I-kappa B/metabolismo , Masculino , MicroRNAs/metabolismo , Ligamento Periodontal/metabolismo , Periodontite/metabolismo , Periodontite/patologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , RNA Longo não Codificante/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA