Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Small ; 20(23): e2308005, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38148319

RESUMO

The conversion of CO2 into valuable carbon-based products using clean and renewable solar energy has been a significant challenge in photocatalysis. It is of paramount importance to develop efficient photocatalysts for the catalytic conversion of CO2 using visible light. In this study, the Ni-MOF-74 material is successfully modified to achieve a highly porous structure (Ni-74-Am) through temperature and solvent modulation. Compared to the original Ni-MOF-74, Ni-74-Am contains more unsaturated Ni active sites resulting from defects, thereby enhancing the performance of CO2 photocatalytic conversion. Remarkably, Ni-74-Am exhibits outstanding photocatalytic performance, with a CO generation rate of 1380 µmol g-1 h-1 and 94% CO selectivity under visible light, significantly surpassing the majority of MOF-based photocatalysts reported to date. Furthermore, experimental characterizations reveal that Ni-74-Am has significantly higher efficiency of photogenerated electron-hole separation and faster carrier migration rate for photocatalytic CO2 reduction. This work enriches the design and application of defective MOFs and provides new insights into the design of MOF-based photocatalysts for renewable energy and environmental sustainability. The findings of this study hold significant promise for developing efficient photocatalysts for CO2 reduction under visible-light conditions.

2.
Pak J Med Sci ; 39(4): 1013-1017, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37492283

RESUMO

Objective: To investigate the clinical efficacy of cognitive behavioral therapy combined with pinaverium bromide tablets in admitted patients with irritable bowel syndrome (IBS). Methods: This is a retrospective study. A total of 60 patients with IBS admitted to Beijing Hospital of Integrated Traditional Chinese and Western Medicine between June 2021 and June 2022 were selected and randomly divided into two groups. Patients in the control group were treated with pinaverium bromide tablets, and those in the observation group were treated with cognitive behavior therapy combined with pinaverium bromide tablets. The improvement of clinical symptoms and quality of life before and after treatment was compared for the two groups, IBS-SSS scale and IBS-QOL scale were used to compare the improvement of clinical symptoms and quality of life between the two groups of patients before and after treatment. SAS score and SDS score were used to evaluate the psychology of the two groups. Adverse reactions occurring during the treatment were recorded, such as nausea and vomiting, dizziness and headache, etc. Results: The efficacy of the observation group was higher than that of the control group and the difference was significant (P<0.05). After treatment, the IBS-SSS score in the observation group and the control group decreased and the IBS-QOL score increased. The SDS score and SAS score in the observation group were better than those in the control group (P< 0.05). After treatment, there was no significant difference in adverse reactions between the observation group and the control group (P > 0.05). Conclusion: Cognitive behavioral therapy combined with pinaverium bromide tablets is significantly effective in the treatment of patients with IBS, which can effectively relieve symptoms such as diarrhea and abdominal pain, and reduce irritable bowel reactions.

3.
Immunopharmacol Immunotoxicol ; 44(3): 410-420, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35285388

RESUMO

CONTEXT: It has been demonstrated that dopamine (DA) plays an important role in numerous cellular processes of T cell. Accumulating evidence suggests that the outcomes of T cell treatment with DA is depended on DA concentrations, T cell subtypes and activation states. However, the detail mechanism of DA function on T cell activation or regulatory T cells is largely unclear. OBJECTIVE: This study aims to explore the mechanisms by which DA regulates the activation of CD4+ T cells and the function of Tregs. MATERIALS AND METHODS: T cell proliferation was detected using CCK-8, BrdU incorporation assay or eFluor 450 cell labeling assay, and Western blot were used to detect phosphorylation of p65 and Erk. Nuclear translocation of transcription factors including p65, FOXO1 and NFAT1 were observed under laser confocal microscopy. RESULTS: Our present study demonstrated that DA (17 µM) can directly promote CD4+ T cells activation through D2-like receptors by enhancing the phosphorylation of p65, also can impair regulatory CD4+ T cells (Tregs) stability and suppressive function through D1- and D2-like receptors by inhibiting the expression of FOXO1 and NFAT1, which are the transcriptional factors of FOXP3, and by suppressing the expression of IL-10 in Tregs. Injection of DA can inhibit tumor growth in vivo. CONCLUSIONS: These data indicate a critical role for DA in promotion of CD4+ T helper response, this may applicable in tumor treatment in the future.


Assuntos
Dopamina , Linfócitos T Reguladores , Western Blotting , Linfócitos T CD4-Positivos , Proliferação de Células , Dopamina/metabolismo , Fatores de Transcrição Forkhead/metabolismo , Ativação Linfocitária
4.
Depress Anxiety ; 38(9): 985-995, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34288243

RESUMO

BACKGROUND: Although common variants in a large collection of patients are associated with increased risk for bipolar disorder (BD), studies have only been able to predict 25%-45% of risks, suggesting that lots of variants that contribute to the risk for BD haven't been identified. Our study aims to identify novel BD risk genes. METHODS: We performed whole-exome sequencing of 27 individuals from 6 BD multi-affected Chinese families to identify candidate variants. Targeted sequencing of one of the novel risk genes, SERINC2, in additional sporadic 717 BD patients and 312 healthy controls (HC) validated the association. Magnetic resonance imaging (MRI) were performed to evaluate the effect of the variant to brain structures from 213 subjects (4 BD subjects from a multi-affected family, 130 sporadic BD subjects and 79 HC control). RESULTS: BD pedigrees had an increased burden of uncommon variants in extracellular matrix (ECM) and calcium ion binding. By large-scale sequencing we identified a novel recessive BD risk gene, SERINC2, which plays a role in synthesis of sphingolipid and phosphatidylserine (PS). MRI image results show the homozygous nonsense variant in SERINC2 affects the volume of white matter in cerebellum. CONCLUSIONS: Our study identified SERINC2 as a risk gene of BD in the Chinese population.


Assuntos
Transtorno Bipolar , Transtorno Bipolar/diagnóstico por imagem , Transtorno Bipolar/genética , Estudos de Casos e Controles , China , Predisposição Genética para Doença , Humanos , Proteínas de Membrana/genética , Linhagem , Sequenciamento do Exoma
5.
Nanotechnology ; 31(2): 024001, 2020 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-31550701

RESUMO

Nanostructured mesoporous carbon materials have been an attractive material for electrochemical energy storage in the recent decades. However, the controllable synthesis of two-dimensional mesoporous carbon with tunable thickness and desired pore structure is highly challenging. Here, a series of graphene@mesoporous nitrogen-doped carbon (denoted as G@mesoNC) core-shell structured nanosheets with tunable thicknesses have been fabricated via a sample hydrothermal method by using cellulose as the green and cheap carbon precursor. The resultant G@mesoNC nanosheets exhibit a distinct sandwich-like structure with tunable thicknesses (from 10 to 30 nm), a large surface area (562 m2 g-1), a narrow pore size distribution (2.3 nm) and a high nitrogen content (7.95%). Significantly, when being used as the electrode for supercapaciors, the resultant G@mesoNC nanosheets showcase a high specific capacitance of 264 F g-1. Most importantly, there is no substantial capacitance decay after 2500 cycles, indicating the perfect cyclic stability of G@mesoNC nanosheets. Our method paves a new way for synthesizing carbon electrodes for energy storage.

6.
J Nanosci Nanotechnol ; 19(4): 2138-2146, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486957

RESUMO

An efficient counter electrode material for dye sensitized solar cells (DSSCs) was synthesized by pyrolysis of melamine and graphene oxide. The synthesized samples were characterized by X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy and scanning electrode microscopy, which show that nitrogen doped reduced graphene oxide (NRGO) was obtained by this synthesis method. In the synthesized NRGO, graphitic structure was kept and the nitrogen was existence as pyrrolic, pyridinic, graphitic, and oxidized nitrogen species in the samples. After deposited as counter electrode films for DSSCs, it shows lower charge-transfer resistance at the electrode/electrolyte interface and higher electrocatalytic activity towards reduction of triiodide (I-3) than that of reduced graphene oxide (RGO) prepared also by this method without adding melamine. Consequently, the DSSCs based on NRGO counter electrodes achieve an energy conversion efficiency of 4.60%, which is higher than that of RGO counter electrode (2.35%). Although the photovoltaic performance of NRGO counter electrode was lower than that of Pt counter electrode (5.70%), it is still a promising counter electrode to replace noble metal Pt due to its low cost and simple synthesis process.

7.
Mol Cell ; 38(4): 512-23, 2010 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-20513427

RESUMO

PHLPP1 and PHLPP2 phosphatases exert their tumor-suppressing functions by dephosphorylation and inactivation of Akt in several breast cancer and glioblastoma cells. However, Akt, or other known targets of PHLPPs that include PKC and ERK, may not fully elucidate the physiological role of the multifunctional phosphatases, especially their powerful apoptosis induction function. Here, we show that PHLPPs induce apoptosis in cancer cells independent of the known targets of PHLPPs. We identified Mst1 as a binding partner that interacts with PHLPPs both in vivo and in vitro. PHLPPs dephosphorylate Mst1 on the T387 inhibitory site, which activate Mst1 and its downstream effectors p38 and JNK to induce apoptosis. The same T387 site can be phosphorylated by Akt. Thus, PHLPP, Akt, and Mst1 constitute an autoinhibitory triangle that controls the fine balance of apoptosis and proliferation that is cell type and context dependent.


Assuntos
Apoptose , Fator de Crescimento de Hepatócito/metabolismo , Proteínas Nucleares/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Animais , Movimento Celular , Proliferação de Células , Células Cultivadas , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fator de Crescimento de Hepatócito/deficiência , Humanos , Camundongos , Fosforilação , Proteína Quinase C/metabolismo , Proteínas Proto-Oncogênicas/deficiência , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
8.
J Nanosci Nanotechnol ; 18(2): 976-983, 2018 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-29448522

RESUMO

Graphene has attracted a lot of attention because of its unique mechanical, thermal, electrical and optical properties. In this study, a double layered structured photoanode consisting of a graphene/TiO2 composite layer and a TiO2 nanoparticles (P25) underlayer was developed. The photoelectric properties of as-prepared double layer structured photoanode were studied with comparison of the anatase TiO2 photoanode. Graphene was prepared by reduction of graphene oxide (GO) under a hydrothermal conditions and graphenen/TiO2 composite semiconductor materials were prepared by mixing graphene into TiO2 paste. The effect of graphene contents in graphene/TiO2 composite layer was also investigated. After constructing double layer photoanode with proper amount of graphene, the photoanode displayed enhanced light and dye adsorption properties with higher light harvesting efficiency, lower internal resistances, faster electron transport and lower charge recombination rate, which resulted in high current density. At the optimum conditions, the DSSC exhibited a Jsc of 15.01 mA cm-2, a Voc of 0.72 V, and a FF of 0.66 with the energy conversion efficiency (η) of 7.08%, indicating a increase in Jsc and η respectively than that of DSSC based on pure TiO2 photoanode, which gives a Jsc of 13.25 mA cm-2, a Voc of 0.73 V, and a FF of 0.62 with a η of 5.94%. However, the addition of excess graphene in the composite layer led to the enhancement of charge recombination, the reduction of dye adsorption and the decrease of photoelectric conversion efficiency of DSSCs. The graphene/TiO2 composite layer in DSSCs could really enhance its efficiency after the amount of graphene was successfully optimized.

9.
Photochem Photobiol Sci ; 15(7): 910-9, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27296527

RESUMO

Tetracarboxylic Zn(ii) phthalocyanine-amino functionalized graphene oxide (ZnPcC4-NGO) hybrid materials have been prepared by a covalent functionalization method. The characterizations indicate that the amino-functionalization of GO has an important influence on the structure and photophysical properties of the ZnPcC4-NGO hybrid. The ZnPcC4-NGO hybrid exhibits enhanced photo-induced electron transfer or energy transfer (PET/ET), compared to the ZnPcC4 covalent functionalized GO (ZnPcC4-GO), owing to the presence of the extended sp(2) carbon configurations, along with the partial reduction of the NGO nanosheets and the introduction of electron-donating ethylenediamine. The nonlinear optical (NLO) properties of the hybrids were investigated using the Z-scan technique at 532 nm with 4 ns laser pulses. The results show that the efficient covalent functionalization and partial reduction of NGO cause the ZnPcC4-NGO hybrid to possess evidently larger NLO properties than the individual NGO, ZnPcC4 and the ZnPcC4-GO hybrid. The enhanced NLO performance can be attributed to the increased excited state absorption from the extended sp(2) carbon configurations of the NGO moiety, reverse saturable absorption arising from ZnPcC4 moiety, and the contribution of the efficient PET/ET process between the ZnPcC4 and NGO moieties in the hybrid.

10.
J Immunol ; 192(4): 1525-35, 2014 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-24453252

RESUMO

Foxp3 expression and regulatory T cell (Treg) development are critical for maintaining dominant tolerance and preventing autoimmune diseases. Human MST1 deficiency causes a novel primary immunodeficiency syndrome accompanied by autoimmune manifestations. However, the mechanism by which Mst1 controls immune regulation is unknown. In this article, we report that Mst1 regulates Foxp3 expression and Treg development/function and inhibits autoimmunity through modulating Foxo1 and Foxo3 (Foxo1/3) stability. We have found that Mst1 deficiency impairs Foxp3 expression and Treg development and function in mice. Mechanistic studies reveal that Mst1 enhances Foxo1/3 stability directly by phosphorylating Foxo1/3 and indirectly by attenuating TCR-induced Akt activation in peripheral T cells. Our studies have also shown that Mst1 deficiency does not affect Foxo1/3 cellular localization in CD4 T cells. In addition, we show that Mst1(-/-) mice are prone to autoimmune disease, and mutant phenotypes, such as overactivation of naive T cells, splenomegaly, and autoimmune pathological changes, are suppressed in Mst1(-/-) bone marrow chimera by cotransplanted wt Tregs. Finally, we demonstrate that Mst1 and Mst2 play a partially redundant role in Treg development and autoimmunity. Our findings not only identify Mst kinases as the long-searched-for factors that simultaneously activate Foxo1/3 and inhibit TCR-stimulated Akt downstream of TCR signaling to promote Foxp3 expression and Treg development, but also shed new light on understanding and designing better therapeutic strategies for MST1 deficiency-mediated human immunodeficiency syndrome.


Assuntos
Doenças Autoimunes/imunologia , Fatores de Transcrição Forkhead/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Linfócitos T Reguladores/imunologia , Transferência Adotiva , Animais , Doenças Autoimunes/genética , Autoimunidade/genética , Autoimunidade/imunologia , Linhagem Celular , Proteína Forkhead Box O1 , Proteína Forkhead Box O3 , Células HEK293 , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteínas Serina-Treonina Quinases/genética , Estabilidade Proteica , Proteínas Proto-Oncogênicas c-akt/metabolismo , Serina-Treonina Quinase 3 , Transdução de Sinais/imunologia , Linfócitos T Reguladores/transplante
11.
Phys Chem Chem Phys ; 17(11): 7149-57, 2015 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-25691138

RESUMO

Reduced graphene oxide-metal(II) phthalocyanine (RGO-MPc, M = Cu, Zn and Pb) hybrid materials have been prepared by the covalent functionalization method. The resultant RGO-MPc hybrids are characterized by scanning electron microscopy, atomic force microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared, ultraviolet-visible absorption and fluorescence spectroscopy. The RGO-MPc hybrids exhibit strong fluorescence quenching by means of the photo-induced electron transfer or the energy transfer (PET/ET) process between the RGO and MPc moieties. The PET/ET process particularly depends on the fluorescence quantum yield of MPc molecules with different central metals. The nonlinear optical (NLO) properties of the RGO-MPc hybrids are investigated by using the Z-scan technique at 532 nm with 4 ns laser pulses. The results show that the NLO properties of MPc molecules increase in the order of Zn < Pb < Cu, but the RGO-MPc hybrids exhibit NLO performance in the inverse sequence of Zn > Pb > Cu, implying that the NLO response arising from the efficient PET/ET process between RGO and MPc may play a more important role in the NLO properties of RGO-MPc hybrids than that originating from the MPc moiety.

12.
iScience ; 26(12): 108484, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38094246

RESUMO

Fibrosis disrupts tissue balance and links to severe illnesses, impairing organ function and, in some cases, even fatality. The interaction between M2 macrophages and fibroblasts is vital for tissue equilibrium. Transforming growth factor ß1 (TGF-ß1) released by M2 macrophages plays a central role in fibrosis, regulating fibroblast activity and extracellular matrix metabolism. Targeting TGF-ß1 is key to fibrosis treatment. In our study using three fibroblast cell lines, we reveal that the M2 macrophage transcription factor SP1 enhances binding to the TGF-ß1 promoter motif, promoting TGF-ß1 transcription and activating fibroblasts (This process does not involve changes in DNA methylation levels surrounding the motif sequence). The zinc fingers in SP1's DNA-binding domain 3 are crucial for this binding. In vivo, targeting SP1 in rat ligaments significantly reduces extracellular matrix accumulation. Our findings highlight SP1 as a promising target for regulating tissue extracellular matrix and combating fibrosis.

13.
Cell Oncol (Dordr) ; 46(2): 357-373, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36593375

RESUMO

PURPOSE: Cancer testis antigens (CTAs) are optimal tumor diagnostic markers and involved in carcinogenesis. However, colorectal cancer (CRC) related CTAs are less reported with impressive diagnostic capability or relevance with tumor metabolism rewiring. Herein, we demonstrated CRC-related CTA, Protamine 1 (PRM1), as a promising diagnostic marker and involved in regulation of cellular growth under nutrient deficiency. METHODS: Transcriptomics of five paired CRC tissues was used to screen CRC-related CTAs. Capability of PRM1 to distinguish CRC was studied by detection of clinical samples through enzyme linked immunosorbent assay (ELISA). Cellular functions were investigated in CRC cell lines through in vivo and in vitro assays. RESULTS: By RNA-seq and detection in 824 clinical samples from two centers, PRM1 expression were upregulated in CRC tissues and patients` serum. Serum PRM1 showed impressive accuracy to diagnose CRC from healthy controls and benign gastrointestinal disease patients, particularly more sensitive for early-staged CRC. Furthermore, we reported that when cells were cultured in serum-reduced medium, PRM1 secretion was upregulated, and secreted PRM1 promoted CRC growth in culture and in mice. Additionally, G1/S phase transition of CRC cells was facilitated by PRM1 protein supplementation and overexpression via activation of PI3K/AKT/mTOR pathway in serum deficient medium. CONCLUSIONS: In general, our research presented PRM1 as a specific CRC antigen and illustrated the importance of PRM1 in CRC metabolism rewiring. The new vulnerability of CRC cells was also provided with the potential to be targeted in future. Diagnostic value and grow factor-like biofunction of PRM1 A represents the secretion process of PRM1 regulated by nutrient deficiency. B represents activation of PI3K/AKT/mTOR pathway of secreted PRM1.


Assuntos
Proliferação de Células , Neoplasias Colorretais , Protaminas , Estresse Fisiológico , Animais , Humanos , Masculino , Camundongos , Antígenos de Neoplasias/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/genética , Neoplasias Colorretais/imunologia , Neoplasias Colorretais/metabolismo , Regulação Neoplásica da Expressão Gênica , Nutrientes/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Protaminas/imunologia , Protaminas/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fase S , Estresse Fisiológico/genética , Serina-Treonina Quinases TOR/metabolismo
14.
J Biol Chem ; 286(9): 6940-5, 2011 Mar 04.
Artigo em Inglês | MEDLINE | ID: mdl-21212262

RESUMO

Mammalian Sterile 20-like kinase 1 (MST1) protein kinase plays an important role in the apoptosis induced by a variety of stresses. The MST1 is a serine/threonine kinase that is activated upon apoptotic stimulation, which in turn activates its downstream targets, JNK/p38, histone H2B and FOXO. It has been reported that overexpression of MST1 initiates apoptosis by activating p53. However, the molecular mechanisms underlying MST1-p53 signaling during apoptosis are unclear. Here, we report that MST1 promotes genotoxic agent-induced apoptosis in a p53-dependent manner. We found that MST1 increases p53 acetylation and transactivation by inhibiting the deacetylation of Sirtuin 1 (Sirt1) and its interaction with p53 and that Sirt1 can be phosphorylated by MST1 leading to the inhibition of Sirt1 activity. Collectively, these findings define a novel regulatory mechanism involving the phosphorylation of Sirt1 by MST1 kinase which leads to p53 activation, with implications for our understanding of signaling mechanisms during DNA damage-induced apoptosis.


Assuntos
Apoptose/fisiologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/fisiologia , Sirtuína 1/metabolismo , Proteína Supressora de Tumor p53/metabolismo , Acetilação , Animais , Dano ao DNA/fisiologia , Fibroblastos/citologia , Fibroblastos/fisiologia , Células HCT116 , Células HEK293 , Fator de Crescimento de Hepatócito/genética , Fator de Crescimento de Hepatócito/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Camundongos , Camundongos Mutantes , Fosforilação/fisiologia , Proteínas Serina-Treonina Quinases/genética , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas/metabolismo , Sirtuína 1/genética , Ativação Transcricional/fisiologia , Proteína Supressora de Tumor p53/genética
15.
Plants (Basel) ; 11(13)2022 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-35807706

RESUMO

Forage has a significant association with animal nutrition because it is an essential part of milk and meat production in the livestock industry. Thus, for the production of high-quality forage, cereal-legume mixed cropping is an efficient method for meat and milk production in the livestock sector. In a two-year experiment between 2020 and 2021, the forage yield, nutritional compositions, amino acid profile, and forage quality were evaluated in the mixed cropping of winter wheat and ryegrass with alfalfa. In this study, a split-plot design with a randomized block design was employed with three sampling replicates. Cultivars were harvested at three maturity stages, namely, flowering, milk, and soft dough, depending on the wheat growth stage. The experimental results show that wheat 2 (Baomai 9)-alfalfa and ryegrass-alfalfa mixed cropping produced higher fresh biomass output than mono-cropping of wheat and ryegrass harvested at the flowering stage. Furthermore, the dry matter (DM) percentage range increased from 20.18% to 36.39%. By contrast, crude protein, crude fiber, neutral detergent fiber, and acid detergent fiber were higher at the flowering stage than at other harvesting stages with DM values of 14.28%, 34.12%, 55.06%, and 32.55%, respectively. Ryegrass-alfalfa mixing yielded higher values of mineral compositions, and T5 (Baomai 9-alfalfa) generally achieved more extraordinary amino acid compositions. The results demonstrate that wheat and ryegrass with alfalfa mixed cropping, and harvesting at the flowering period produces high-quality forage. Additionally, mixed cropping with alfalfa remarkably affected forage quality parameters, while mixed cropping of wheat cultivar 2 (Baomai 9) and alfalfa obtained the highest dry matter intake, digestible dry matter, relative feed value, total digestible nutrient, relative forage quality, and quality index values of 2.56, 68.54, 136.49, 60.50, 127.41, and 1.69, respectively. Thus, the mixed-cropping of wheat and ryegrass with alfalfa forage is recommended for its maximized quality forage production and nutritional values in livestock feedstuff.

16.
J Pain Res ; 15: 3523-3536, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36394054

RESUMO

Objective: To investigate the risk factors for hallux valgus complicated with pain under the second metatarsal and construct an effective model and method for predicting hallux valgus complicated with pain under the second metatarsal based on risk factors. Methods: A total of 545 patients with hallux valgus who were admitted to our hospital were divided randomly into a training set and a validation set. The demographic characteristics, imaging indices and gait test indices of the patients were collected. The risk factors were identified by univariate and multivariate logistic regression analyses. A risk prediction model for hallux valgus with pain under the second metatarsal was established, and the area under the curve (AUC) of the receiver operating characteristic and a decision curve analysis were used for verification and identification. The value of the model was tested in the verification group. Results: Second metatarsal length, second metatarsal peak pressure, hallux valgus angle (HVA), intermetatarsal angle 1-2 (IMA1-2) and weight were the risk factors for hallux valgus complicated with pain under the second metatarsal. Based on the weighting of these seven risk factors, a prediction model was established. The AUC of the prediction model was 0.84 (95% confidence interval [CI]: 0.802~0.898, P < 0.05), and the results of a Hosmer-Lemeshow test showed a good degree of calibration (χ 2 = 10.62, P > 0.05). The internal validation of the AUC was 0.83 (95% CI: 0.737-0.885, P < 0.05). The model had obvious net benefits when the threshold probability was 10%-70%. Conclusion: Second metatarsal length, second metatarsal peak pressure, HVA, IMA1-2 and weight were the risk factors for hallux valgus combined with second metatarsal pain. The risk prediction model for hallux valgus complicated with pain under the second metatarsal based on these seven variables was proven effective. Level of Evidence: Level III, retrospective comparative study.

17.
Cell Death Discov ; 8(1): 142, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-35354799

RESUMO

The Casitas B-lineage lymphoma (Cbl) family proteins are E3 ubiquitin ligases implicated in the regulation of various immune cells. However, their function in dendritic cells (DCs) remains unclear. To investigate the role of Cbl family members in DCs, we created dendritic cell double-deficient Casitas B lymphoma-b (Cbl-b) and Casitas B lineage lymphoma (c-Cbl) mice by crossing Cbl-b-/- mice with c-Cblflox/flox CD11c-Cre+ mice. We found that specific deletion of Cbl-b and c-Cbl in CD11c+ cells, predominantly in DCs, led to liver fibrosis, cirrhosis, and accumulation of systemic conventional Type I DCs (cDC1s) due to enhanced cell proliferation and decreased cell apoptosis. In addition to a change in DC number, double knockout (dKO) cDC1s exhibited a partially activated status as indicated by high basal expression levels of certain cytokines and possessed an enhanced capacity to prime T cells. After adoptive transfer, dKO cDC1s could drive liver fibrosis too. In further experiments, we demonstrated that Cbl-b and c-Cbl could target signal transducer and activator of transcription 5 (STAT5), a transcriptional repressor for the pro-apoptotic protein Bim, to promote ubiquitination-mediated degradation and cell apoptosis in cDC1s. Further extensive experiments revealed that Cbl-b mediated K27-linked ubiquitination of lysine 164 of STAT5a while c-Cbl induced K29-linked ubiquitination of lysine 696 of STAT5a and K27-linked ubiquitination of lysine 140 and 694 of STAT5b. Thus, our findings indicate a functional redundancy of Cbl-b and c-Cbl in cDC homeostasis and maturation.

18.
Plants (Basel) ; 11(20)2022 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-36297825

RESUMO

One of the main problems in the animal industries currently is the constant provision of forage in sufficient amounts with acceptable nutritional content for large and small ruminants, as livestock is a significant source of income for rural people in the Loess Plateau region. Cereals and legumes are essential forage crops because of their nutritional significance, particularly the protein concentration in legumes and the fiber content in cereals. Therefore, combining cereal and legume crops may be a practical solution to the problems of inadequate forage nutrition, an insufficient amount of forage, unsustainable agricultural methods, and declining soil fertility. The current study predicts that mixed cropping of cereals and legumes at the harvesting stage of the soft dough stage and maturity stage based on the cereal growth stage will have different effects on forage biomass output, forage quality index, and nutritional value of the forage. In this study, wheat (Triticum aestivum) and ryegrass (Lolium multiflorum) are used as cereal crops and pea (Pisum sativum), and alfalfa (Medicago sativa) are used as legume crops. Three sample replicates and a split-plot design with a randomized block design are used. The study is conducted in the 2020−2021 and 2021−2022 cropping seasons. The experimental results show that cereal−legume mixed cropping, particularly the cereal−alfalfa combination, has a positive impact on the biomass yield and nutritional composition of the forage. However, adding peas to cereal has a negative impact on biomass yield, nutritional composition, mineral composition, and forage quality index. Among the treatments, ryegrass−alfalfa mixed cropping was shown to have higher values of WSC%, CP%, EE%, CF%, and ash% in both growing seasons. The values are WSC (15.82%), CP (10.78%), EE (2.30%), CF (32.06%), and ash (10.68%) for the 2020−2021 cropping seasons and WSC (15.03%), CP (11.68%), EE (3.30%), CF (32.92%), and ash (11.07%) for the 2021−2022 cropping seasons, respectively. On the other hand, the current study finds that cereal−alfalfa mixed cropping had a detrimental impact on NDF and ADF concentrations. All nutritional indices, including CP, WSC, EE, CF, ash, NDF, and ADF, have favorable correlations with one another. Furthermore, in both growing seasons, RA, ryegrass−alfalfa mixed cropping, has higher mineral compositions and forage quality indicators. Furthermore, harvesting times have a significant impact on the fresh biomass yield, dry matter yield, nutritional compositions, mineral compositions, and forage quality parameters (p < 0.001), with the highest values being shown when harvesting at the soft dough stage. The current study concludes that, based on chemical composition and quality analysis, the soft dough stage is the greatest harvesting period, and that the cereal−alfalfa mixed cropping is the most preferable due to its maximized quality forage production and nutritional content in livestock feedstuff in the Loess Plateau region.

19.
J Immunol ; 183(6): 3865-72, 2009 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-19692642

RESUMO

The MST1 kinase was recently identified as playing an essential role in the promotion of lymphocyte polarization and adhesion stimulated by chemokines and TCR signaling. However, the physiological relevance of the Mst1 pathway in thymocyte development is not completely understood. In this study, we analyzed the effect of Mst1 disruption on thymocyte development and migration. Mst1-deficient (Mst1(-/-)) mice displayed an accumulation of mature thymocytes in the thymus, a dramatic reduction of lymphocytes in blood and peripheral lymphoid tissues, and a decrease of homing ability to peripheral lymph nodes. Mst1(-/-) thymocytes were impaired in chemotactic response to chemokines, such as CCL19, but not to sphingosine-1-phosphate. Further analyses of Mst1(-/-) mice revealed a severe impairment in the egress of mature T cells from the thymus. T lineage-specific knockout of the Mst1 gene demonstrates a cell-intrinsic role for Mst1 in regulating T cell development. Our study indicates that Mst1 is crucial in controlling lymphocyte chemotaxis and thymocyte emigration.


Assuntos
Quimiotaxia , Fator de Crescimento de Hepatócito/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Timo/citologia , Animais , Quimiocinas , Fator de Crescimento de Hepatócito/deficiência , Linfonodos , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas/deficiência , Linfócitos T/citologia
20.
Transl Cancer Res ; 10(11): 4947-4957, 2021 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35116345

RESUMO

OBJECTIVE: Protamine 1 (PRM1) is specific in sperm and plays essential roles in fertilization, also a member of cancer testis antigen (CTA) family. This study aims to summarize the expression and function of PRM1 in spermatogenesis, and to broaden the current knowledge and inspire future development of PRM1-based therapeutic strategies in cancer treatment and nanomedicine. BACKGROUND: The protamine proteins, are characterized by an arginine-rich core and cysteine residues. Humans express two types of protamine: PRM1 and PRM2. The abnormal expression or proportion of PRM1 and PRM2 is known to be associated with subfertility and infertility, especially for PRM1 which is highly evolutionary conserved in mammalians and expressed in all vertebrates. Biological functions of PRM1 have been unveiled in diverse cellular processes, such as tumorigenesis, somatic cell nucleus transfer, and drug delivery systems. Moreover, PRM1 is identified as a CTA in chronic leukemia (CLL) and colorectal cancer (CRC). METHODS: Literature was obtained using PubMed and the keywords protamine 1, PRM1, or P1, from January 1, 1980, through July 20, 2021. We also collect the additional evidence through screening references of articles identified through the PubMed searches. CONCLUSIONS: PRM1 is well-studied in male infertility, and further researches and attempts to develop PRM1 as novel tumor marker, as well as drug delivery vector, will be of important clinical significance.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA