Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sensors (Basel) ; 19(23)2019 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-31756906

RESUMO

Great length, large weight and other factors may cause difficulty in measuring the profile accuracy of the double-headed screw rotor. To solve this problem, an on-machine measuring system based on a laser-displacement sensor (LDS) was designed and implemented in this paper by taking an LXK100 four-axis whirlwind milling machine as the carrier. To improve the measurement accuracy of the system, the generalized variable-structural-element morphological method, polynomial interpolation algorithm and ellipse fitting method were first combined to realize the rapid subpixel centroid extraction from a noise-containing spot image, thus improving the data acquisition accuracy of the LDS, and then the hybrid method was experimentally verified. Next, a wavelet threshold function with high-order differentiability and adaptive wavelet coefficient contractility was constructed based on the hyperbolic tangent function, so as to inhibit the disturbance from random errors and preserve real profile information, and this method was simulated and verified. Subsequently, a smoothing algorithm for point cloud data was proposed based on the Lagrange multiplier method to avoid the defect of the piecewise curve-fitting method, that is, function continuity and differentiability could not be satisfied at piecewise points. Finally, the profile accuracy was calculated in real time according to the data reconstruction result and the machining quality was judged. The measurement experiment of the double-headed screw rotor indicates that the proposed on-machine measuring system can complete the profile accuracy measurement for a screw pitch within 39.7 s with measurement accuracy reaching ±8 µm, and the measurement uncertainties of the major axis, minor axis and screw pitch are 0.72 µm, 0.69 µm and 1.24 µm, respectively. Therefore, the measurement accuracy and efficiency are both remarkably improved.

2.
Sensors (Basel) ; 18(10)2018 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340433

RESUMO

Laser triangulation (LT) is widely used in many fields due to its good stability, high resolution and fast speed. However, the accuracy in these applications suffers from severe constraints on the data acquisition accuracy of LT. To solve this problem, the optical triangulation principle, the object equation of the optical path relationship and the deviation of the laser spot centroid are applied to deduce a mathematical model. Therefore, the image sensor inclination errors can be quantitatively calculated, and the collected data are compensated in real time. Further, a threshold sub-pixel gray-gravity (GG) extraction algorithm is proposed; the gradient function and Gaussian fit algorithm are used to set thresholds to remove the impact of the spot edge noise area on the center location; and polynomial interpolation is employed to enhance the data density of the traditional GG method, thus improving the data acquisition accuracy of LT. Finally, the above methods are applied to on-machine measurement of the American Petroleum Institute (API) thread and the screw rotor, respectively. The experimental results prove that the proposed method can significantly improve the measurement accuracy of free-form curved surfaces using LT and that the improved laser spot center extraction algorithm is more suitable for free-form curved surfaces with smaller curvature and more uniform curvature changes.

3.
Sensors (Basel) ; 18(4)2018 Apr 13.
Artigo em Inglês | MEDLINE | ID: mdl-29652836

RESUMO

The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 µm and repeatability limit ≤ 4 µm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA