Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(17): e2300252120, 2023 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-37068244

RESUMO

Reading a sentence entails integrating the meanings of individual words to infer more complex, higher-order meaning. This highly rapid and complex human behavior is known to engage the inferior frontal gyrus (IFG) and middle temporal gyrus (MTG) in the language-dominant hemisphere, yet whether there are distinct contributions of these regions to sentence reading is still unclear. To probe these neural spatiotemporal dynamics, we used direct intracranial recordings to measure neural activity while reading sentences, meaning-deficient Jabberwocky sentences, and lists of words or pseudowords. We isolated two functionally and spatiotemporally distinct frontotemporal networks, each sensitive to distinct aspects of word and sentence composition. The first distributed network engages the IFG and MTG, with IFG activity preceding MTG. Activity in this network ramps up over the duration of a sentence and is reduced or absent during Jabberwocky and word lists, implying its role in the derivation of sentence-level meaning. The second network engages the superior temporal gyrus and the IFG, with temporal responses leading those in frontal lobe, and shows greater activation for each word in a list than those in sentences, suggesting that sentential context enables greater efficiency in the lexical and/or phonological processing of individual words. These adjacent, yet spatiotemporally dissociable neural mechanisms for word- and sentence-level processes shed light on the richly layered semantic networks that enable us to fluently read. These results imply distributed, dynamic computation across the frontotemporal language network rather than a clear dichotomy between the contributions of frontal and temporal structures.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Humanos , Imageamento por Ressonância Magnética/métodos , Idioma , Linguística , Lobo Frontal/fisiologia , Semântica
2.
J Neurosci ; 42(27): 5438-5450, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35641189

RESUMO

Reading words aloud is a fundamental aspect of literacy. The rapid rate at which multiple distributed neural substrates are engaged in this process can only be probed via techniques with high spatiotemporal resolution. We probed this with direct intracranial recordings covering most of the left hemisphere in 46 humans (26 male, 20 female) as they read aloud regular, exception and pseudo-words. We used this to create a spatiotemporal map of word processing and to derive how broadband γ activity varies with multiple word attributes critical to reading speed: lexicality, word frequency, and orthographic neighborhood. We found that lexicality is encoded earliest in mid-fusiform (mFus) cortex, and precentral sulcus, and is represented reliably enough to allow single-trial lexicality decoding. Word frequency is first represented in mFus and later in the inferior frontal gyrus (IFG) and inferior parietal sulcus (IPS), while orthographic neighborhood sensitivity resides solely in IPS. We thus isolate the neural correlates of the distributed reading network involving mFus, IFG, IPS, precentral sulcus, and motor cortex and provide direct evidence for parallel processes via the lexical route from mFus to IFG, and the sublexical route from IPS and precentral sulcus to anterior IFG.SIGNIFICANCE STATEMENT Reading aloud depends on multiple complex cerebral computations: mapping from a written letter string on a page to a sequence of spoken sound representations. Here, we used direct intracranial recordings in a large cohort while they read aloud known and novel words, to track, across space and time, the progression of neural representations of behaviorally relevant factors that govern reading speed. We find, concordant with cognitive models of reading, that known and novel words are differentially processed through a lexical route, sensitive to frequency of occurrence of known words in natural language, and a sublexical route, performing letter-by-letter construction of novel words.


Assuntos
Mapeamento Encefálico , Imageamento por Ressonância Magnética , Mapeamento Encefálico/métodos , Córtex Cerebral , Feminino , Humanos , Idioma , Imageamento por Ressonância Magnética/métodos , Masculino
3.
Epilepsia ; 64(5): 1200-1213, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36806185

RESUMO

OBJECTIVE: Lexical retrieval deficits are characteristic of a variety of different neurological disorders. However, the exact substrates responsible for this are not known. We studied a large cohort of patients undergoing surgery in the dominant temporal lobe for medically intractable epilepsy (n = 95) to localize brain regions that were associated with anomia. METHODS: We performed a multivariate voxel-based lesion-symptom mapping analysis to correlate surgical lesions within the temporal lobe with changes in naming ability. Additionally, we used a surface-based mixed-effects multilevel analysis to estimate group-level broadband gamma activity during naming across a subset of patients with electrocorticographic recordings and integrated these results with lesion-deficit findings. RESULTS: We observed that ventral temporal regions, centered around the middle fusiform gyrus, were significantly associated with a decline in naming. Furthermore, we found that the ventral aspect of temporal lobectomies was linearly correlated to a decline in naming, with a clinically significant decline occurring once the resection extended 6 cm from the anterior tip of the temporal lobe on the ventral surface. On electrocorticography, the majority of these cortical regions were functionally active following visual processing. These loci coincide with the sites of susceptibility artifacts during echoplanar imaging, which may explain why this region has been previously underappreciated as the locus responsible for postoperative naming deficits. SIGNIFICANCE: Taken together, these data highlight the crucial contribution of the ventral temporal cortex in naming and its important role in the pathophysiology of anomia following temporal lobe resections. As such, surgical strategies should attempt to preserve this region to mitigate postoperative language deficits.


Assuntos
Epilepsia do Lobo Temporal , Humanos , Epilepsia do Lobo Temporal/diagnóstico por imagem , Epilepsia do Lobo Temporal/cirurgia , Epilepsia do Lobo Temporal/patologia , Anomia/etiologia , Mapeamento Encefálico/métodos , Lobo Temporal/diagnóstico por imagem , Lobo Temporal/cirurgia , Lobo Temporal/patologia , Idioma
4.
Hum Brain Mapp ; 43(5): 1657-1675, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34904772

RESUMO

Direct electrical stimulation (DES) is considered to be the gold standard for mapping cortical function. A careful mapping of the eloquent cortex is key to successful resective or ablative surgeries, with a minimal postoperative deficit, for treatment of drug-resistant epilepsy. There is accumulating evidence suggesting that not only local, but also remote activations play an equally important role in evoking clinical effects. By introducing a new intracranial stimulation paradigm and signal analysis methodology allowing to disambiguate EEG responses from stimulation artifacts we highlight the spatial extent of the networks associated with clinical effects. Our study includes 26 patients that underwent stereoelectroencephalographic investigations for drug-resistant epilepsy, having 337 depth electrodes with 4,351 contacts sampling most brain structures. The routine high-frequency electrical stimulation protocol for eloquent cortex mapping was altered in a subtle way, by alternating the polarity of the biphasic pulses in a train, causing the splitting the spectral lines of the artifactual components, exposing the underlying tissue response. By performing a frequency-domain analysis of the EEG responses during DES we were able to capture remote activations and highlight the effect's network. By using standard intersubject averaging and a fine granularity HCP-MMP parcellation, we were able to create local and distant connectivity maps for 614 stimulations evoking specific clinical effects. The clinical value of such maps is not only for a better understanding of the extent of the effects' networks guiding the invasive exploration, but also for understanding the spatial patterns of seizure propagation given the timeline of the seizure semiology.


Assuntos
Epilepsia Resistente a Medicamentos , Epilepsia , Encéfalo , Mapeamento Encefálico/métodos , Epilepsia Resistente a Medicamentos/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Estimulação Elétrica/métodos , Epilepsia/diagnóstico por imagem , Epilepsia/cirurgia , Humanos , Convulsões/cirurgia
5.
Neuroimage ; 220: 117059, 2020 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-32562780

RESUMO

The cingulate cortex is part of the limbic system. Its function and connectivity are organized in a rostro-caudal and ventral-dorsal manner which was addressed by various other studies using rather coarse cortical parcellations. In this study, we aim at describing its function and connectivity using invasive recordings from patients explored for focal drug-resistant epilepsy. We included patients that underwent stereo-electroencephalographic recordings using intracranial electrodes in the University Emergency Hospital Bucharest between 2012 and 2019. We reviewed all high frequency stimulations (50 â€‹Hz) performed for functional mapping of the cingulate cortex. We used two methods to characterize brain connectivity. Effective connectivity was inferred based on the analysis of cortico-cortical potentials (CCEPs) evoked by single pulse electrical stimulation (SPES) (15 â€‹s inter-pulse interval). Functional connectivity was estimated using the non-linear regression method applied to 60 â€‹s spontaneous electrical brain signal intervals. The effective (stimulation-evoked) and functional (non-evoked) connectivity analyses highlight brain networks in a different way. While non-evoked connectivity evidences areas having related activity, often in close proximity to each other, evoked connectivity highlights spatially extended networks. To highlight in a comprehensive way the cingulate cortex's network, we have performed a bi-modal connectivity analysis that combines the resting-state broadband h2 non-linear correlation with cortico-cortical evoked potentials. We co-registered the patient's anatomy with the fsaverage FreeSurfer template to perform the automatic labeling based on HCP-MMP parcellation. At a group level, connectivity was estimated by averaging responses over stimulated/recorded or recorded sites in each pair of parcels. Finally, for multiple regions that evoked a clinical response during high frequency stimulation, we combined the connectivity of individual pairs using maximum intensity projection. Connectivity was assessed by applying SPES on 2094 contact pairs and recording CCEPs on 3580 contacts out of 8582 contacts of 660 electrodes implanted in 47 patients. Clinical responses elicited by high frequency stimulations in 107 sites (pairs of contacts) located in the cingulate cortex were divided in 10 groups: affective, motor behavior, motor elementary, versive, speech, vestibular, autonomic, somatosensory, visual and changes in body perception. Anterior cingulate cortex was shown to be connected to the mesial temporal, orbitofrontal and prefrontal cortex. In the middle cingulate cortex, we located affective, motor behavior in the anterior region, and elementary motor and somatosensory in the posterior part. This region is connected to the prefrontal, premotor and primary motor network. Finally, the posterior cingulate was shown to be connected with the visual areas, mesial and lateral parietal and temporal cortex.


Assuntos
Mapeamento Encefálico/métodos , Giro do Cíngulo/fisiopatologia , Rede Nervosa/fisiopatologia , Adolescente , Adulto , Córtex Cerebral/fisiopatologia , Criança , Pré-Escolar , Epilepsia Resistente a Medicamentos/fisiopatologia , Estimulação Elétrica , Eletroencefalografia , Epilepsias Parciais/fisiopatologia , Feminino , Humanos , Masculino , Adulto Jovem
6.
Hum Brain Mapp ; 40(9): 2813-2826, 2019 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-30868705

RESUMO

Body awareness is the result of sensory integration in the posterior parietal cortex; however, other brain structures are part of this process. Our goal is to determine how the cingulate cortex is involved in the representation of our body. We retrospectively selected patients with drug-resistant epilepsy, explored by stereo-electroencephalography, that had the cingulate cortex sampled outside the epileptogenic zone. The clinical effects of high-frequency electrical stimulation were reviewed and only those sites that elicited changes related to body perception were included. Connectivity of the cingulate cortex and other cortical structures was assessed using the h2 coefficient, following a nonlinear regression analysis of the broadband EEG signal. Poststimulation changes in connectivity were compared between two sets of stimulations eliciting or not eliciting symptoms related to body awareness (interest and control groups). We included 17 stimulations from 12 patients that reported different types of body perception changes such as sensation of being pushed toward right/left/up, one limb becoming heavier/lighter, illusory sensation of movement, sensation of pressure, sensation of floating or detachment of one hemi-body. High-frequency stimulation in the cingulate cortex (1 anterior, 15 middle, 1 posterior part) elicits body perception changes, associated with a decreased connectivity of the dominant posterior insula and increased coupling between other structures, located particularly in the nondominant hemisphere.


Assuntos
Conscientização/fisiologia , Córtex Cerebral/fisiologia , Conectoma , Eletrocorticografia , Giro do Cíngulo/fisiologia , Rede Nervosa/fisiologia , Propriocepção/fisiologia , Adulto , Córtex Cerebral/diagnóstico por imagem , Epilepsia Resistente a Medicamentos/cirurgia , Estimulação Elétrica , Humanos , Cinestesia/fisiologia , Rede Nervosa/diagnóstico por imagem
7.
Epilepsia ; 59(3): 650-660, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29322500

RESUMO

OBJECTIVE: Epilepsy is characterized by transient alterations in brain synchronization resulting in seizures with a wide spectrum of manifestations. Seizure severity and risks for patients depend on the evolution and spread of the hypersynchronous discharges. With standard visual inspection and pattern classification, this evolution could not be predicted early on. It is still unclear to what degree the seizure onset zone determines seizure severity. Such information would improve our understanding of ictal epileptic activity and the existing electroencephalogram (EEG)-based warning and intervention systems, providing specific reactions to upcoming seizure types. We investigate the possibility of predicting the future development of an epileptic seizure during the first seconds of recordings after their electrographic onset. METHODS: Based on intracranial EEG recordings of 493 ictal events from 26 patients with focal epilepsy, a set of 25 time and frequency domain features was computed using nonoverlapping 1-second time windows, from the first 3, 5, and 10 seconds of ictal EEG. Three random forest classifiers were trained to predict the future evolution of the seizure, distinguishing between subclinical events, focal onset aware and impaired awareness, and focal to bilateral tonic-clonic seizures. RESULTS: Results show that early seizure type prediction is possible based on a single EEG channel located in the seizure onset zone with correct prediction rates of 76.2 ± 14.5% for distinguishing subclinical electrographic events from clinically manifest seizures, 75 ± 16.8% for distinguishing focal onset seizures that are or are not bilateral tonic-clonic, and 71.4 ± 17.2% for distinguishing between focal onset seizures with or without impaired awareness. All predictions are above the chance level (P < .01). SIGNIFICANCE: These findings provide the basis for developing systems for specific early warning of patients and health care providers, and for targeting EEG-based closed-loop intervention approaches to electrographic patterns with a high inherent risk to become clinically manifest.


Assuntos
Eletroencefalografia/métodos , Epilepsias Parciais/diagnóstico , Epilepsias Parciais/fisiopatologia , Convulsões/diagnóstico , Convulsões/fisiopatologia , Humanos , Valor Preditivo dos Testes
8.
Epilepsia ; 59(7): 1421-1432, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29893987

RESUMO

OBJECTIVES: Laser interstitial thermal therapy (LITT) is a minimally invasive surgical technique for focal epilepsy. A major appeal of LITT is that it may result in fewer cognitive deficits, especially when targeting dominant hemisphere mesial temporal lobe (MTL) epilepsy. To evaluate this, as well as to determine seizure outcomes following LITT, we evaluated the relationships between ablation volumes and surgical or cognitive outcomes in 43 consecutive patients undergoing LITT for MTL epilepsy. METHODS: All patients underwent unilateral LITT targeting mesial temporal structures. FreeSurfer software was used to derive cortical and subcortical segmentation of the brain (especially subregions of the MTL) using preoperative magnetic resonance imaging (MRI). Ablation volumes were outlined using a postablation T1-contrasted MRI. The percentages of the amygdala, hippocampus, and entorhinal cortex ablated were quantified objectively. The volumetric measures were regressed against changes in neuropsychological performance before and after surgery, RESULTS: A median of 73.7% of amygdala, 70.9% of hippocampus, and 28.3% of entorhinal cortex was ablated. Engel class I surgical outcome was obtained in 79.5% and 67.4% of the 43 patients at 6 and 20.3 months of follow-up, respectively. No significant differences in surgical outcomes were found across patient subgroups (hemispheric dominance, hippocampal sclerosis, or need for intracranial evaluation). Furthermore, no significant differences in volumes ablated were found between patients with Engel class IA vs Engel class II-IV outcomes. In patients undergoing LITT in the dominant hemisphere, a decline in verbal and narrative memory, but not in naming function was noted. SIGNIFICANCE: Seizure-free outcomes following LITT may be comparable in carefully selected patients with and without MTS, and these outcomes are comparable with outcomes following microsurgical resection. Failures may result from non-mesial components of the epileptogenic network that are not affected by LITT. Cognitive declines following MTL-LITT are modest, and principally affect memory processes.


Assuntos
Transtornos Cognitivos/etiologia , Epilepsia do Lobo Temporal/cirurgia , Terapia a Laser , Testes Neuropsicológicos , Complicações Pós-Operatórias/etiologia , Lobo Temporal/patologia , Lobo Temporal/cirurgia , Adolescente , Adulto , Idoso , Tonsila do Cerebelo/cirurgia , Transtornos Cognitivos/diagnóstico , Estudos de Coortes , Córtex Entorrinal/cirurgia , Epilepsia do Lobo Temporal/diagnóstico , Feminino , Seguimentos , Hipocampo/cirurgia , Humanos , Imageamento por Ressonância Magnética , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/diagnóstico , Esclerose , Adulto Jovem
9.
Neuroimage ; 132: 344-358, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26921715

RESUMO

In the context of the human brain, the term "connectivity" can refer to structural, functional or effective connectivity. Intracranial electrical stimulation is perhaps the most direct way of investigating the effective connectivity. We propose a method of mapping the effective connectivity, revealed by the electrical stimulation of brain structures, over the structural connectome (SC), obtained through diffusion spectrum imaging (DSI), to form a structural-effective connectome (SEC). A number of 24 patients with refractory epilepsy were implanted with depth electrodes for pre-surgical evaluation. Effective connectivity was assessed by analyzing the responses to single pulse electrical stimulation (SPES). Stimulation pulses having variable amplitude were applied to each pair of adjacent contacts and responses evoked by stimulation were recorded from other contacts located in other brain areas. Early responses (10-110 ms) on the stimulation-activated contacts located outside the epileptogenic zone were averaged for each patient, resulting in a patient-level physiological effective connectome (EC). The population level EC is computed by averaging the connections of the individual ECs, on a structure by structure basis. A fiber activation factor is used to weight the number of fibers connecting a pair of structures in the SC by its corresponding normalized EC value. The resulting number of effectively activated fibers describes the directional connection strength between two structures in the SEC. A physiological SEC comprising directional connections between 70 segmented brain areas in both hemispheres, was obtained by inclusion of structures outside the epileptogenic zone only. Over the entire structure set, the Spearman's correlation coefficient ρ between the number of fibers extracted from the DSI Atlas and the normalized RMS responses to SPES was ρ=0.21 (p<0.001), while Kendall's tau coefficients ranged -0.52-0.44 (p<0.05). The physiological structural-effective connectomics approach we have introduced can be applied for the creation of a whole-brain connectivity atlas that can be used as a reference tool for differential analysis of altered versus normal brain connectivity in epileptic patients.


Assuntos
Córtex Cerebral/anatomia & histologia , Córtex Cerebral/fisiologia , Conectoma/métodos , Estimulação Elétrica , Adolescente , Adulto , Criança , Eletroencefalografia , Epilepsia/fisiopatologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Vias Neurais/anatomia & histologia , Vias Neurais/fisiologia , Processamento de Sinais Assistido por Computador , Adulto Jovem
10.
Stereotact Funct Neurosurg ; 92(2): 117-25, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24751486

RESUMO

BACKGROUND: The stereoelectroencephalographic (SEEG) implantation procedures still represent a challenge due to the intrinsic complexity of the method and the number of depth electrodes required. OBJECTIVES: We aim at designing and evaluating the accuracy of a custom stereotactic fixture based on the StarFix™ technology (FHC Inc., Bowdoin, ME) that significantly simplifies and optimizes the implantation of depth electrodes used in presurgical evaluation of patients with drug-resistant epilepsy. METHODS: Fiducial markers that also serve as anchors for the fixture are implanted into the patient's skull prior to surgery. A 3D fixture model is designed within the surgical planning software, with the planned trajectories incorporated in its design, aligned with the patient's anatomy. The stereotactic fixture is built using 3D laser sintering technology based on the computer-generated model. Bilateral rectangular grids of guide holes orthogonal to the midsagittal plane and centered on the midcommissural point are incorporated in the fixture design, allowing a wide selection of orthogonal trajectories. Up to two additional grids can be accommodated for targeting structures where oblique trajectories are required. The frame has no adjustable parts, this feature reducing the risk of inaccurate coordinate settings while simultaneously reducing procedure time significantly. RESULTS: We have used the fixture for the implantation of depth electrodes for presurgical evaluation of 4 patients with drug-resistant focal epilepsy, with nearly 2-fold reduction in the duration of the implantation procedure. We have obtained a high accuracy with a submillimetric mean positioning error of 0.68 mm for the anchor bolts placed at the trajectory entry point and 1.64 mm at target. CONCLUSIONS: The custom stereotactic fixture design greatly simplifies the planning procedure and significantly reduces the time in the operating room, while maintaining a high accuracy.


Assuntos
Eletrodos Implantados , Eletroencefalografia/métodos , Epilepsia/cirurgia , Técnicas Estereotáxicas/instrumentação , Adulto , Mapeamento Encefálico/métodos , Humanos , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA