Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Pharm Res ; 31(6): 1460-8, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23934254

RESUMO

PURPOSE: To evaluate the ability of radiofrequency (RF)-triggered drug release from a multicomponent chain-shaped nanoparticle to inhibit the growth of an aggressive breast tumor. METHODS: A two-step solid phase chemistry was employed to synthesize doxorubicin-loaded nanochains, which were composed of three iron oxide nanospheres and one doxorubicin-loaded liposome assembled in a 100-nm-long linear nanochain. The nanochains were tested in the 4T1-LUC-GFP orthotopic mouse model, which is a highly aggressive breast cancer model. The 4T1-LUC-GFP cell line stably expresses firefly luciferase, which allowed the non-invasive in vivo imaging of tumor response to the treatment using bioluminescence imaging (BLI). RESULTS: Longitudinal BLI imaging showed that a single nanochain treatment followed by application of RF resulted in an at least 100-fold lower BLI signal compared to the groups treated with nanochains (without RF) or free doxorubicin followed by RF. A statistically significant increase in survival time of the nanochain-treated animals followed by RF (64.3 days) was observed when compared to the nanochain-treated group without RF (35.7 days), free doxorubicin-treated group followed by RF (38.5 days), and the untreated group (30.5 days; n=5 animals per group). CONCLUSIONS: These studies showed that the combination of RF and nanochains has the potential to effectively treat highly aggressive cancers and prolong survival.


Assuntos
Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias Mamárias Experimentais/tratamento farmacológico , Nanopartículas/administração & dosagem , Adjuvantes Farmacêuticos , Animais , Antibióticos Antineoplásicos/administração & dosagem , Antibióticos Antineoplásicos/uso terapêutico , Neoplasias da Mama/patologia , Doxorrubicina/administração & dosagem , Doxorrubicina/análogos & derivados , Doxorrubicina/uso terapêutico , Feminino , Humanos , Luminescência , Neoplasias Mamárias Experimentais/patologia , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/uso terapêutico , Ondas de Rádio , Análise de Sobrevida , Carga Tumoral
2.
ACS Nano ; 9(8): 8012-21, 2015 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-26203676

RESUMO

Various targeting strategies and ligands have been employed to direct nanoparticles to tumors that upregulate specific cell-surface molecules. However, tumors display a dynamic, heterogeneous microenvironment, which undergoes spatiotemporal changes including the expression of targetable cell-surface biomarkers. Here, we investigated a dual-ligand nanoparticle to effectively target two receptors overexpressed in aggressive tumors. By using two different chemical specificities, the dual-ligand strategy considered the spatiotemporal alterations in the expression patterns of the receptors in cancer sites. As a case study, we used two mouse models of metastasis of triple-negative breast cancer using the MDA-MB-231 and 4T1 cells. The dual-ligand system utilized two peptides targeting P-selectin and αvß3 integrin, which are functionally linked to different stages of the development of metastatic disease at a distal site. Using in vivo multimodal imaging and post mortem histological analyses, this study shows that the dual-ligand nanoparticle effectively targeted metastatic disease that was otherwise missed by single-ligand strategies. The dual-ligand nanoparticle was capable of capturing different metastatic sites within the same animal that overexpressed either receptor or both of them. Furthermore, the highly efficient targeting resulted in 22% of the injected dual-ligand nanoparticles being deposited in early-stage metastases within 2 h after injection.


Assuntos
Diagnóstico por Imagem/métodos , Sistemas de Liberação de Medicamentos/métodos , Neoplasias Pulmonares/diagnóstico , Nanopartículas/química , Neoplasias de Mama Triplo Negativas/diagnóstico , 1,2-Dipalmitoilfosfatidilcolina/química , Animais , Linhagem Celular Tumoral , Colesterol/química , Composição de Medicamentos , Feminino , Expressão Gênica , Humanos , Integrina alfaVbeta3/genética , Integrina alfaVbeta3/metabolismo , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/secundário , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/ultraestrutura , Transplante de Neoplasias , Selectina-P/genética , Selectina-P/metabolismo , Ligação Proteica , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Neoplasias de Mama Triplo Negativas/genética , Neoplasias de Mama Triplo Negativas/patologia
3.
J Pharm Sci ; 104(8): 2600-10, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26036431

RESUMO

The vast majority of breast cancer deaths are due to metastatic disease. Although deep tissue targeting of nanoparticles is suitable for some primary tumors, vascular targeting may be a more attractive strategy for micrometastasis. This study combined a vascular targeting strategy with the enhanced targeting capabilities of a nanoparticle to evaluate the ability of a gold nanoparticle (AuNP) to specifically target the early spread of metastatic disease. As a ligand for the vascular targeting strategy, we utilized a peptide targeting alpha(v) beta(3) integrin, which is functionally linked to the development of micrometastases at a distal site. By employing a straightforward radiolabeling method to incorporate Technetium-99m into the AuNPs, we used the high sensitivity of radionuclide imaging to monitor the longitudinal accumulation of the nanoparticles in metastatic sites. Animal and histological studies showed that vascular targeting of the nanoparticle facilitated highly accurate targeting of micrometastasis in the 4T1 mouse model of breast cancer metastasis using radionuclide imaging and a low dose of the nanoparticle. Because of the efficient targeting scheme, 14% of the injected AuNP deposited at metastatic sites in the lungs within 60 min after injection, indicating that the vascular bed of metastasis is a viable target site for nanoparticles.


Assuntos
Adenocarcinoma/secundário , Neoplasias da Mama/metabolismo , Sistemas de Liberação de Medicamentos , Endotélio Vascular/metabolismo , Integrina alfaVbeta3/metabolismo , Nanopartículas Metálicas/química , Peptídeos Cíclicos/metabolismo , Adenocarcinoma/tratamento farmacológico , Adenocarcinoma/metabolismo , Adenocarcinoma/patologia , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/patologia , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Feminino , Ouro/química , Ligantes , Medições Luminescentes , Proteínas Luminescentes/genética , Proteínas Luminescentes/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Transplante de Neoplasias , Peptídeos Cíclicos/química , Cintilografia , Proteínas Recombinantes/metabolismo , Propriedades de Superfície , Tecnécio , Imagem Corporal Total
4.
Cancer Res ; 75(7): 1356-65, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25627979

RESUMO

Glioblastoma multiforme is generally recalcitrant to current surgical and local radiotherapeutic approaches. Moreover, systemic chemotherapeutic approaches are impeded by the blood-tumor barrier. To circumvent limitations in the latter area, we developed a multicomponent, chain-like nanoparticle that can penetrate brain tumors, composed of three iron oxide nanospheres and one drug-loaded liposome linked chemically into a linear chain-like assembly. Unlike traditional small-molecule drugs or spherical nanotherapeutics, this oblong-shaped, flexible nanochain particle possessed a unique ability to gain access to and accumulate at glioma sites. Vascular targeting of nanochains to the αvß3 integrin receptor resulted in a 18.6-fold greater drug dose administered to brain tumors than standard chemotherapy. By 2 hours after injection, when nanochains had exited the blood stream and docked at vascular beds in the brain, the application of an external low-power radiofrequency field was sufficient to remotely trigger rapid drug release. This effect was produced by mechanically induced defects in the liposomal membrane caused by the oscillation of the iron oxide portion of the nanochain. In vivo efficacy studies conducted in two different mouse orthotopic models of glioblastoma illustrated how enhanced targeting by the nanochain facilitates widespread site-specific drug delivery. Our findings offer preclinical proof-of-concept for a broadly improved method for glioblastoma treatment.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Encefálicas/tratamento farmacológico , Portadores de Fármacos/administração & dosagem , Glioblastoma/tratamento farmacológico , Animais , Antineoplásicos/química , Barreira Hematoencefálica , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Doxorrubicina/administração & dosagem , Portadores de Fármacos/química , Compostos Férricos/química , Glioblastoma/metabolismo , Glioblastoma/patologia , Integrina alfaVbeta3/metabolismo , Camundongos Nus , Nanopartículas/química , Invasividade Neoplásica , Ensaios Antitumorais Modelo de Xenoenxerto
5.
J Control Release ; 173: 51-8, 2014 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-24188960

RESUMO

While potent cytotoxic agents are available to oncologists, the clinical utility of these agents is limited due to their non-specific distribution in the body and toxicity to normal tissues leading to use of suboptimal doses for eradication of metastatic disease. Furthermore, treatment of micrometastases is impeded by several biobarriers, including their small size and high dispersion to organs, making them nearly inaccessible to drugs. To circumvent these limitations in treating metastatic disease, we developed a multicomponent, flexible chain-like nanoparticle (termed nanochain) that possesses a unique ability to gain access to and be deposited at micrometastatic sites. Moreover, coupling nanochain particles to radiofrequency (RF)-triggered cargo delivery facilitated widespread delivery of drug into hard-to-reach cancer cells. Collectively, these features synergistically facilitate effective treatment and ultimately eradication of micrometastatic disease using a low dose of a cytotoxic drug.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias da Mama/tratamento farmacológico , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Micrometástase de Neoplasia/tratamento farmacológico , Animais , Antineoplásicos/uso terapêutico , Mama/efeitos dos fármacos , Mama/patologia , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Micrometástase de Neoplasia/patologia
6.
ACS Nano ; 6(5): 4157-68, 2012 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-22486623

RESUMO

While nanoparticles maximize the amount of chemotherapeutic drug in tumors relative to normal tissues, nanoparticle-based drugs are not accessible to the majority of cancer cells because nanoparticles display patchy, near-perivascular accumulation in tumors. To overcome the limitations of current drugs in their molecular or nanoparticle form, we developed a nanoparticle based on multicomponent nanochains to deliver drug to the majority of cancer cells throughout a tumor while reducing off-target delivery. The nanoparticle is composed of three magnetic nanospheres and one doxorubicin-loaded liposome assembled in a 100 nm long chain. These nanoparticles display prolonged blood circulation and significant intratumoral deposition in tumor models in rodents. Furthermore, the magnetic particles of the chains serve as a mechanical transducer to transfer radio frequency energy to the drug-loaded liposome. The defects on the liposomal walls trigger the release of free drug capable of spreading throughout the entire tumor, which results in a widespread anticancer effect.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias/tratamento farmacológico , Ondas de Rádio , Animais , Antineoplásicos/uso terapêutico , Modelos Animais de Doenças , Humanos , Nanotecnologia , Ratos
7.
ACS Nano ; 6(10): 8783-95, 2012 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-23005348

RESUMO

While the enhanced permeability and retention effect may promote the preferential accumulation of nanoparticles into well-vascularized primary tumors, it is ineffective in the case of metastases hidden within a large population of normal cells. Due to their small size, high dispersion to organs, and low vascularization, metastatic tumors are less accessible to targeted nanoparticles. To tackle these challenges, we designed a nanoparticle for vascular targeting based on an α(v)ß(3) integrin-targeted nanochain particle composed of four iron oxide nanospheres chemically linked in a linear assembly. The chain-shaped nanoparticles enabled enhanced "sensing" of the tumor-associated remodeling of the vascular bed, offering increased likelihood of specific recognition of metastatic tumors. Compared to spherical nanoparticles, the chain-shaped nanoparticles resulted in superior targeting of α(v)ß(3) integrin due to geometrically enhanced multivalent docking. We performed multimodal in vivo imaging (fluorescence molecular tomography and magnetic resonance imaging) in a non-invasive and quantitative manner, which showed that the nanoparticles targeted metastases in the liver and lungs with high specificity in a highly aggressive breast tumor model in mice.


Assuntos
Neoplasias da Mama/patologia , Neoplasias da Mama/secundário , Integrina alfaVbeta3/química , Nanocápsulas , Animais , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Meios de Contraste , Feminino , Teste de Materiais , Camundongos , Camundongos Endogâmicos BALB C , Nanocápsulas/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA