Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Blood ; 122(26): 4220-9, 2013 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-24169826

RESUMO

The c-Myc oncoprotein regulates >15% of the human transcriptome and a limited number of microRNAs (miRNAs). Here, we establish that in a human B-lymphoid cell line, Myc-repressed, but not Myc-stimulated, genes are significantly enriched for predicted binding sites of Myc-regulated miRNAs, primarily those comprising the Myc-activated miR-17~92 cluster. Notably, gene set enrichment analysis demonstrates that miR-17∼92 is a major regulator of B-cell receptor (BCR) pathway components. Many of them are immunoreceptor tyrosine inhibitory motif (ITIM)-containing proteins, and ITIM proteins CD22 and FCGR2B were found to be direct targets of miR-17∼92. Consistent with the propensity of ITIM proteins to recruit phosphatases, either MYC or miR-17~92 expression was necessary to sustain phosphorylation of spleen tyrosine kinase (SYK) and the B-cell linker protein (BLNK) upon ligation of the BCR. Further downstream, stimulation of the BCR response by miR-17-92 resulted in the enhanced calcium flux and elevated levels of Myc itself. Notably, inhibition of the miR-17~92 cluster in diffuse large B-cell lymphoma (DLBCL) cell lines diminished the BCR response as measured by SYK and BLNK phosphorylation. Conversely, human DLBCLs of the BCR subtype express higher Myc and mir17hg transcript levels than other subtypes. Hence, the Myc-miR-17-92-BCR axis, frequently affected by genomic rearrangements, constitutes a novel lymphomagenic feed-forward loop.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Linfoma Difuso de Grandes Células B/metabolismo , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Receptores Fc/metabolismo , Receptores de IgG/metabolismo , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Cálcio/metabolismo , Linhagem Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Linfoma Difuso de Grandes Células B/genética , Linfoma Difuso de Grandes Células B/patologia , MicroRNAs/genética , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-myc/genética , RNA Longo não Codificante , Receptores Fc/genética , Receptores de IgG/genética , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/genética , Transdução de Sinais/fisiologia , Quinase Syk
2.
FASEB J ; 28(11): 4936-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25077561

RESUMO

Dysregulation of mitochondrial Ca(2+)-dependent bioenergetics has been implicated in various pathophysiological settings, including neurodegeneration and myocardial infarction. Although mitochondrial Ca(2+) transport has been characterized, and several molecules, including LETM1, have been identified, the functional role of LETM1-mediated Ca(2+) transport remains unresolved. This study examines LETM1-mediated mitochondrial Ca(2+) transport and bioenergetics in multiple cell types, including fibroblasts derived from patients with Wolf-Hirschhorn syndrome (WHS). The results show that both mitochondrial Ca(2+) influx and efflux rates are impaired in LETM1 knockdown, and similar phenotypes were observed in ΔEF hand, (D676A D688K)LETM1 mutant-overexpressed cells, and in cells derived from patients with WHS. Although LETM1 levels were lower in WHS-derived fibroblasts, the mitochondrial Ca(2+) uniporter components MCU, MCUR1, and MICU1 remain unaltered. In addition, the MCU mitoplast patch-clamp current (IMCU) was largely unaffected in LETM1-knockdown cells. Silencing of LETM1 also impaired basal mitochondrial oxygen consumption, possibly via complex IV inactivation and ATP production. Remarkably, LETM1 knockdown also resulted in increased reactive oxygen species production. Further, LETM1 silencing promoted AMPK activation, autophagy, and cell cycle arrest. Reconstitution of LETM1 or antioxidant overexpression rescued mitochondrial Ca(2+) transport and bioenergetics. These findings reveal the role of LETM1-dependent mitochondrial Ca(2+) flux in shaping cellular bioenergetics.


Assuntos
Proteínas de Ligação ao Cálcio/metabolismo , Cálcio/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Metabolismo Energético , Proteínas de Membrana/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células HeLa , Humanos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Ratos
3.
J Biol Chem ; 285(34): 26494-505, 2010 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-20566649

RESUMO

Mitochondrial membrane potential loss has severe bioenergetic consequences and contributes to many human diseases including myocardial infarction, stroke, cancer, and neurodegeneration. However, despite its prominence and importance in cellular energy production, the basic mechanism whereby the mitochondrial membrane potential is established remains unclear. Our studies elucidate that complex II-driven electron flow is the primary means by which the mitochondrial membrane is polarized under hypoxic conditions and that lack of the complex II substrate succinate resulted in reversible membrane potential loss that could be restored rapidly by succinate supplementation. Inhibition of mitochondrial complex I and F(0)F(1)-ATP synthase induced mitochondrial depolarization that was independent of the mitochondrial permeability transition pore, Bcl-2 (B-cell lymphoma 2) family proteins, or high amplitude swelling and could not be reversed by succinate. Importantly, succinate metabolism under hypoxic conditions restores membrane potential and ATP levels. Furthermore, a reliance on complex II-mediated electron flow allows cells from mitochondrial disease patients devoid of a functional complex I to maintain a mitochondrial membrane potential that conveys both a mitochondrial structure and the ability to sequester agonist-induced calcium similar to that of normal cells. This finding is important as it sets the stage for complex II functional preservation as an attractive therapy to maintain mitochondrial function during hypoxia.


Assuntos
Cálcio/fisiologia , Complexo II de Transporte de Elétrons/fisiologia , Hipóxia , Potencial da Membrana Mitocondrial , Proteínas Proto-Oncogênicas c-bcl-2/fisiologia , Trifosfato de Adenosina , Animais , Humanos , Camundongos , Proteínas de Transporte da Membrana Mitocondrial , Poro de Transição de Permeabilidade Mitocondrial , ATPases Translocadoras de Prótons/fisiologia , Ratos , Ácido Succínico/farmacologia
4.
MAbs ; 13(1): 1871171, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33557687

RESUMO

T-cell engaging biologics is a class of novel and promising immune-oncology compounds that leverage the immune system to eradicate cancer. Here, we compared and contrasted a bispecific diabody-Fc format, which displays a relatively short antigen-binding arm distance, with our bispecific IgG platform. By generating diverse panels of antigen-expressing cells where B cell maturation antigen is either tethered to the cell membrane or located to the juxtamembrane region and masked by elongated structural spacer units, we presented a systematic approach to investigate the role of antigen epitope location and molecular formats in immunological synapse formation and cytotoxicity. We demonstrated that diabody-Fc is more potent for antigen epitopes located in the membrane distal region, while bispecific IgG is more efficient for membrane-proximal epitopes. Additionally, we explored other parameters, including receptor density, antigen-binding affinity, and kinetics. Our results show that molecular format and antigen epitope location, which jointly determine the intermembrane distance between target cells and T cells, allow decoupling of cytotoxicity and cytokine release, while antigen-binding affinities appear to be positively correlated with both readouts. Our work offers new insight that could potentially lead to a wider therapeutic window for T-cell engaging biologics in general.


Assuntos
Anticorpos Biespecíficos/farmacologia , Antígeno de Maturação de Linfócitos B/metabolismo , Produtos Biológicos/farmacologia , Epitopos , Imunoglobulina G/farmacologia , Engenharia de Proteínas , Receptores de Antígenos de Linfócitos T/metabolismo , Linfócitos T/efeitos dos fármacos , Animais , Anticorpos Biespecíficos/genética , Anticorpos Biespecíficos/imunologia , Anticorpos Biespecíficos/metabolismo , Citotoxicidade Celular Dependente de Anticorpos , Reações Antígeno-Anticorpo , Antígeno de Maturação de Linfócitos B/imunologia , Sítios de Ligação de Anticorpos , Produtos Biológicos/imunologia , Produtos Biológicos/metabolismo , Complexo CD3/imunologia , Complexo CD3/metabolismo , Linhagem Celular Tumoral , Citocinas/metabolismo , Mapeamento de Epitopos , Humanos , Imunoglobulina G/genética , Imunoglobulina G/imunologia , Imunoglobulina G/metabolismo , Sinapses Imunológicas/efeitos dos fármacos , Sinapses Imunológicas/imunologia , Sinapses Imunológicas/metabolismo , Cinética , Receptores de Antígenos de Linfócitos T/imunologia , Linfócitos T/imunologia , Linfócitos T/metabolismo , Tirosina Quinase 3 Semelhante a fms/imunologia , Tirosina Quinase 3 Semelhante a fms/metabolismo
5.
J Exp Med ; 211(4): 653-68, 2014 Apr 07.
Artigo em Inglês | MEDLINE | ID: mdl-24638169

RESUMO

Microbial infection triggers assembly of inflammasome complexes that promote caspase-1-dependent antimicrobial responses. Inflammasome assembly is mediated by members of the nucleotide binding domain leucine-rich repeat (NLR) protein family that respond to cytosolic bacterial products or disruption of cellular processes. Flagellin injected into host cells by invading Salmonella induces inflammasome activation through NLRC4, whereas NLRP3 is required for inflammasome activation in response to multiple stimuli, including microbial infection, tissue damage, and metabolic dysregulation, through mechanisms that remain poorly understood. During systemic infection, Salmonella avoids NLRC4 inflammasome activation by down-regulating flagellin expression. Macrophages exhibit delayed NLRP3 inflammasome activation after Salmonella infection, suggesting that Salmonella may evade or prevent the rapid activation of the NLRP3 inflammasome. We therefore screened a Salmonella Typhimurium transposon library to identify bacterial factors that limit NLRP3 inflammasome activation. Surprisingly, absence of the Salmonella TCA enzyme aconitase induced rapid NLRP3 inflammasome activation. This inflammasome activation correlated with elevated levels of bacterial citrate, and required mitochondrial reactive oxygen species and bacterial citrate synthase. Importantly, Salmonella lacking aconitase displayed NLRP3- and caspase-1/11-dependent attenuation of virulence, and induced elevated serum IL-18 in wild-type mice. Together, our data link Salmonella genes controlling oxidative metabolism to inflammasome activation and suggest that NLRP3 inflammasome evasion promotes systemic Salmonella virulence.


Assuntos
Proteínas de Transporte/metabolismo , Evasão da Resposta Imune/imunologia , Inflamassomos/metabolismo , Salmonella typhimurium/metabolismo , Aconitato Hidratase/metabolismo , Animais , Proteínas Reguladoras de Apoptose/metabolismo , Sistemas de Secreção Bacterianos , Proteínas de Ligação ao Cálcio/metabolismo , Citrato (si)-Sintase/metabolismo , Ciclo do Ácido Cítrico , Genes Bacterianos/genética , Imunidade , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/metabolismo , Mutação/genética , Proteína 3 que Contém Domínio de Pirina da Família NLR , Oxirredução , Espécies Reativas de Oxigênio/metabolismo , Salmonelose Animal/imunologia , Salmonelose Animal/patologia , Salmonella typhimurium/enzimologia , Salmonella typhimurium/genética , Salmonella typhimurium/imunologia
6.
Mol Biol Cell ; 25(6): 936-47, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24430870

RESUMO

Emerging findings suggest that two lineages of mitochondrial Ca(2+) uptake participate during active and resting states: 1) the major eukaryotic membrane potential-dependent mitochondrial Ca(2+) uniporter and 2) the evolutionarily conserved exchangers and solute carriers, which are also involved in ion transport. Although the influx of Ca(2+) across the inner mitochondrial membrane maintains metabolic functions and cell death signal transduction, the mechanisms that regulate mitochondrial Ca(2+) accumulation are unclear. Solute carriers--solute carrier 25A23 (SLC25A23), SLC25A24, and SLC25A25--represent a family of EF-hand-containing mitochondrial proteins that transport Mg-ATP/Pi across the inner membrane. RNA interference-mediated knockdown of SLC25A23 but not SLC25A24 and SLC25A25 decreases mitochondrial Ca(2+) uptake and reduces cytosolic Ca(2+) clearance after histamine stimulation. Ectopic expression of SLC25A23 EF-hand-domain mutants exhibits a dominant-negative phenotype of reduced mitochondrial Ca(2+) uptake. In addition, SLC25A23 interacts with mitochondrial Ca(2+) uniporter (MCU; CCDC109A) and MICU1 (CBARA1) while also increasing IMCU. In addition, SLC25A23 knockdown lowers basal mROS accumulation, attenuates oxidant-induced ATP decline, and reduces cell death. Further, reconstitution with short hairpin RNA-insensitive SLC25A23 cDNA restores mitochondrial Ca(2+) uptake and superoxide production. These findings indicate that SLC25A23 plays an important role in mitochondrial matrix Ca(2+) influx.


Assuntos
Antiporters/genética , Canais de Cálcio/genética , Cálcio/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/genética , Trifosfato de Adenosina/metabolismo , Sistemas de Transporte de Aminoácidos Acídicos/antagonistas & inibidores , Sistemas de Transporte de Aminoácidos Acídicos/genética , Sistemas de Transporte de Aminoácidos Acídicos/metabolismo , Antiporters/antagonistas & inibidores , Antiporters/metabolismo , Canais de Cálcio/metabolismo , Sinalização do Cálcio , Proteínas de Ligação ao Cálcio/antagonistas & inibidores , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Morte Celular , Células Clonais , Regulação da Expressão Gênica , Células HeLa , Histamina/farmacologia , Humanos , Transporte de Íons/efeitos dos fármacos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/antagonistas & inibidores , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , Consumo de Oxigênio/efeitos dos fármacos , Estrutura Terciária de Proteína , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo
7.
Nat Cell Biol ; 14(12): 1336-43, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23178883

RESUMO

Ca(2+) flux across the mitochondrial inner membrane regulates bioenergetics, cytoplasmic Ca(2+) signals and activation of cell death pathways. Mitochondrial Ca(2+) uptake occurs at regions of close apposition with intracellular Ca(2+) release sites, driven by the inner membrane voltage generated by oxidative phosphorylation and mediated by a Ca(2+) selective ion channel (MiCa; ref. ) called the uniporter whose complete molecular identity remains unknown. Mitochondrial calcium uniporter (MCU) was recently identified as the likely ion-conducting pore. In addition, MICU1 was identified as a mitochondrial regulator of uniporter-mediated Ca(2+) uptake in HeLa cells. Here we identified CCDC90A, hereafter referred to as MCUR1 (mitochondrial calcium uniporter regulator 1), an integral membrane protein required for MCU-dependent mitochondrial Ca(2+) uptake. MCUR1 binds to MCU and regulates ruthenium-red-sensitive MCU-dependent Ca(2+) uptake. MCUR1 knockdown does not alter MCU localization, but abrogates Ca(2+) uptake by energized mitochondria in intact and permeabilized cells. Ablation of MCUR1 disrupts oxidative phosphorylation, lowers cellular ATP and activates AMP kinase-dependent pro-survival autophagy. Thus, MCUR1 is a critical component of a mitochondrial uniporter channel complex required for mitochondrial Ca(2+) uptake and maintenance of normal cellular bioenergetics.


Assuntos
Cálcio/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/metabolismo , Animais , Células COS , Canais de Cálcio/genética , Canais de Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/genética , Proteínas de Ligação ao Cálcio/metabolismo , Proteínas de Transporte de Cátions/genética , Proteínas de Transporte de Cátions/metabolismo , Linhagem Celular , Células HeLa , Humanos , Masculino , Proteínas de Membrana/genética , Camundongos , Proteínas de Transporte da Membrana Mitocondrial/genética , Proteínas Mitocondriais/genética
8.
Free Radic Biol Med ; 48(2): 306-17, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19897030

RESUMO

Nitric oxide (NO) and other reactive nitrogen species target multiple sites in the mitochondria to influence cellular bioenergetics and survival. Kinetic imaging studies revealed that NO from either activated macrophages or donor compounds rapidly diffuses to the mitochondria, causing a dose-dependent progressive increase in NO-dependent DAF fluorescence, which corresponded to mitochondrial membrane potential loss and initiated alterations in cellular bioenergetics that ultimately led to necrotic cell death. Cellular dysfunction is mediated by an elevated 3-nitrotyrosine signature of the mitochondrial complex I subunit NDUFB8, which is vital for normal mitochondrial function as evidenced by selective knockdown via siRNA. Overexpression of mitochondrial superoxide dismutase substantially decreased NDUFB8 nitration and restored mitochondrial homeostasis. Further, treatment of cells with either necrostatin-1 or siRNA knockdown of RIP1 and RIP3 prevented NO-mediated necrosis. This work demonstrates that the interaction between NO and mitochondrially derived superoxide alters mitochondrial bioenergetics and cell function, thus providing a molecular mechanism for reactive oxygen and nitrogen species-mediated alterations in mitochondrial homeostasis.


Assuntos
Complexo I de Transporte de Elétrons/metabolismo , Endotélio Vascular/metabolismo , Fibroblastos/metabolismo , Macrófagos/metabolismo , Mitocôndrias/metabolismo , Animais , Linhagem Celular , Complexo I de Transporte de Elétrons/genética , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/patologia , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Imidazóis/farmacologia , Indóis/farmacologia , Macrófagos/efeitos dos fármacos , Macrófagos/patologia , Potencial da Membrana Mitocondrial , Camundongos , Microscopia de Fluorescência , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/genética , Necrose/genética , Óxido Nítrico/metabolismo , Complexo de Proteínas Formadoras de Poros Nucleares/genética , Complexo de Proteínas Formadoras de Poros Nucleares/metabolismo , Subunidades Proteicas/metabolismo , RNA Interferente Pequeno/genética , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Ratos , Proteína Serina-Treonina Quinases de Interação com Receptores/genética , Proteína Serina-Treonina Quinases de Interação com Receptores/metabolismo
10.
Mol Cell Biol ; 29(11): 3099-112, 2009 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-19332555

RESUMO

Ethanol intoxication stimulates the production of proinflammatory cytokines, increases the formation of reactive oxygen species, and induces mitochondrial impairment. However, information is limited as to the exact sequence and components involved in ethanol-induced hepatotoxicity. Acute ethanol exposure enhances mitochondrial superoxide (O(2)(*-)) production and impairs mitochondrial Ca(2+) handling. In turn, O(2)(*-) facilitates cytochrome c release and mitochondrial membrane potential loss that is not dependent upon H(2)O(2) and divalent cations and requires Bak in a Bax-independent fashion. Furthermore, triggering of Bak's proapoptotic activity requires the cytosolic presence of Bid, a BH3-only protein that is processed by the initiator caspase-2. Together, these studies identify an O(2)(*-)-driven, caspase-initiated apoptotic pathway that selectively involves the Bcl-2 family proteins Bid and Bak. This pathway manifests itself during chronic ethanol consumption in aged animals and identifies caspase-2, Bid, and Bak as essential mediators of O(2)(*-)-induced apoptosis that may prove effective targets for the development of therapeutics to treat alcoholic liver disease.


Assuntos
Proteína Agonista de Morte Celular de Domínio Interatuante com BH3/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Superóxidos/farmacologia , Proteína Killer-Antagonista Homóloga a bcl-2/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Cálcio/metabolismo , Caspase 2/metabolismo , Caspase 8/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Citocromos c/metabolismo , Etanol/administração & dosagem , Etanol/farmacologia , Comportamento Alimentar/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Humanos , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/enzimologia , Proteína bcl-X/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA