Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMJ Open Sci ; 5(1): e100103, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35047698

RESUMO

Preclinical research is a vital step in the drug discovery pipeline and more generally in helping to better understand human disease aetiology and its management. Systematic reviews (SRs) can be powerful in summarising and appraising this evidence concerning a specific research question, to highlight areas of improvements, areas for further research and areas where evidence may be sufficient to take forward to other research domains, for instance clinical trial. Guidance and tools for preclinical research synthesis remain limited despite their clear utility. We aimed to create an online end-to-end platform primarily for conducting SRs of preclinical studies, that was flexible enough to support a wide variety of experimental designs, was adaptable to different research questions, would allow users to adopt emerging automated tools and support them during their review process using best practice. In this article, we introduce the Systematic Review Facility (https://syrf.org.uk), which was launched in 2016 and designed to support primarily preclinical SRs from small independent projects to large, crowdsourced projects. We discuss the architecture of the app and its features, including the opportunity to collaborate easily, to efficiently manage projects, to screen and annotate studies for important features (metadata), to extract outcome data into a secure database, and tailor these steps to each project. We introduce how we are working to leverage the use of automation tools and allow the integration of these services to accelerate and automate steps in the systematic review workflow.

2.
Wellcome Open Res ; 3: 157, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30809592

RESUMO

Background: The extraction of data from the reports of primary studies, on which the results of systematic reviews depend, needs to be carried out accurately. To aid reliability, it is recommended that two researchers carry out data extraction independently. The extraction of statistical data from graphs in PDF files is particularly challenging, as the process is usually completely manual, and reviewers need sometimes to revert to holding a ruler against the page to read off values: an inherently time-consuming and error-prone process. Methods: To mitigate some of the above problems we integrated and customised two existing JavaScript libraries to create a new web-based graphical data extraction tool to assist reviewers in extracting data from graphs. This tool aims to facilitate more accurate and timely data extraction through a user interface which can be used to extract data through mouse clicks. We carried out a non-inferiority evaluation to examine its performance in comparison with participants' standard practice for extracting data from graphs in PDF documents. Results: We found that the customised graphical data extraction tool is not inferior to users' (N=10) prior standard practice. Our study was not designed to show superiority, but suggests that, on average, participants saved around 6 minutes per graph using the new tool, accompanied by a substantial increase in accuracy. Conclusions: Our study suggests that the incorporation of this type of tool in online systematic review software would be beneficial in facilitating the production of accurate and timely evidence synthesis to improve decision-making.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA