Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
1.
Nature ; 553(7686): 111-114, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29300009

RESUMO

The complement system is a crucial component of the host response to infection and tissue damage. Activation of the complement cascade generates anaphylatoxins including C5a and C3a. C5a exerts a pro-inflammatory effect via the G-protein-coupled receptor C5a anaphylatoxin chemotactic receptor 1 (C5aR1, also known as CD88) that is expressed on cells of myeloid origin. Inhibitors of the complement system have long been of interest as potential drugs for the treatment of diseases such as sepsis, rheumatoid arthritis, Crohn's disease and ischaemia-reperfusion injuries. More recently, a role of C5a in neurodegenerative conditions such as Alzheimer's disease has been identified. Peptide antagonists based on the C5a ligand have progressed to phase 2 trials in psoriasis and rheumatoid arthritis; however, these compounds exhibited problems with off-target activity, production costs, potential immunogenicity and poor oral bioavailability. Several small-molecule competitive antagonists for C5aR1, such as W-54011 and NDT9513727, have been identified by C5a radioligand-binding assays. NDT9513727 is a non-peptide inverse agonist of C5aR1, and is highly selective for the primate and gerbil receptors over those of other species. Here, to study the mechanism of action of C5a antagonists, we determine the structure of a thermostabilized C5aR1 (known as C5aR1 StaR) in complex with NDT9513727. We found that the small molecule bound between transmembrane helices 3, 4 and 5, outside the helical bundle. One key interaction between the small molecule and residue Trp2135.49 seems to determine the species selectivity of the compound. The structure demonstrates that NDT9513727 exerts its inverse-agonist activity through an extra-helical mode of action.


Assuntos
Benzodioxóis/química , Benzodioxóis/metabolismo , Imidazóis/química , Imidazóis/metabolismo , Receptor da Anafilatoxina C5a/antagonistas & inibidores , Receptor da Anafilatoxina C5a/química , Animais , Benzodioxóis/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Agonismo Inverso de Drogas , Células HEK293 , Humanos , Imidazóis/farmacologia , Modelos Moleculares , Mutação , Estabilidade Proteica , Estrutura Secundária de Proteína , Receptor da Anafilatoxina C5a/genética , Receptor da Anafilatoxina C5a/metabolismo , Receptores Adrenérgicos beta 2/química , Receptores Adrenérgicos beta 2/metabolismo , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/metabolismo
3.
Nature ; 546(7657): 254-258, 2017 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-28562585

RESUMO

Glucagon-like peptide 1 (GLP-1) regulates glucose homeostasis through the control of insulin release from the pancreas. GLP-1 peptide agonists are efficacious drugs for the treatment of diabetes. To gain insight into the molecular mechanism of action of GLP-1 peptides, here we report the crystal structure of the full-length GLP-1 receptor bound to a truncated peptide agonist. The peptide agonist retains an α-helical conformation as it sits deep within the receptor-binding pocket. The arrangement of the transmembrane helices reveals hallmarks of an active conformation similar to that observed in class A receptors. Guided by this structural information, we design peptide agonists with potent in vivo activity in a mouse model of diabetes.


Assuntos
Receptor do Peptídeo Semelhante ao Glucagon 1/agonistas , Receptor do Peptídeo Semelhante ao Glucagon 1/química , Peptídeos/química , Peptídeos/farmacologia , Animais , Sítios de Ligação , Cristalografia por Raios X , Relação Dose-Resposta a Droga , Receptor do Peptídeo Semelhante ao Glucagon 1/metabolismo , Humanos , Masculino , Camundongos , Modelos Moleculares , Peptídeos/metabolismo , Conformação Proteica , Ratos , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Glucagon/química
4.
Nature ; 545(7652): 112-115, 2017 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-28445455

RESUMO

Protease-activated receptors (PARs) are a family of G-protein-coupled receptors (GPCRs) that are irreversibly activated by proteolytic cleavage of the N terminus, which unmasks a tethered peptide ligand that binds and activates the transmembrane receptor domain, eliciting a cellular cascade in response to inflammatory signals and other stimuli. PARs are implicated in a wide range of diseases, such as cancer and inflammation. PARs have been the subject of major pharmaceutical research efforts but the discovery of small-molecule antagonists that effectively bind them has proved challenging. The only marketed drug targeting a PAR is vorapaxar, a selective antagonist of PAR1 used to prevent thrombosis. The structure of PAR1 in complex with vorapaxar has been reported previously. Despite sequence homology across the PAR isoforms, discovery of PAR2 antagonists has been less successful, although GB88 has been described as a weak antagonist. Here we report crystal structures of PAR2 in complex with two distinct antagonists and a blocking antibody. The antagonist AZ8838 binds in a fully occluded pocket near the extracellular surface. Functional and binding studies reveal that AZ8838 exhibits slow binding kinetics, which is an attractive feature for a PAR2 antagonist competing against a tethered ligand. Antagonist AZ3451 binds to a remote allosteric site outside the helical bundle. We propose that antagonist binding prevents structural rearrangements required for receptor activation and signalling. We also show that a blocking antibody antigen-binding fragment binds to the extracellular surface of PAR2, preventing access of the tethered ligand to the peptide-binding site. These structures provide a basis for the development of selective PAR2 antagonists for a range of therapeutic uses.


Assuntos
Receptor PAR-2/química , Receptor PAR-2/metabolismo , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Anticorpos Bloqueadores/química , Anticorpos Bloqueadores/farmacologia , Benzimidazóis/química , Benzimidazóis/farmacologia , Benzodioxóis/química , Benzodioxóis/farmacologia , Álcoois Benzílicos/química , Álcoois Benzílicos/farmacologia , Cristalografia por Raios X , Humanos , Imidazóis/química , Imidazóis/farmacologia , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/farmacologia , Cinética , Ligantes , Modelos Moleculares , Receptor PAR-2/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos
5.
Nature ; 540(7633): 462-465, 2016 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-27926729

RESUMO

Chemokines and their G-protein-coupled receptors play a diverse role in immune defence by controlling the migration, activation and survival of immune cells. They are also involved in viral entry, tumour growth and metastasis and hence are important drug targets in a wide range of diseases. Despite very significant efforts by the pharmaceutical industry to develop drugs, with over 50 small-molecule drugs directed at the family entering clinical development, only two compounds have reached the market: maraviroc (CCR5) for HIV infection and plerixafor (CXCR4) for stem-cell mobilization. The high failure rate may in part be due to limited understanding of the mechanism of action of chemokine antagonists and an inability to optimize compounds in the absence of structural information. CC chemokine receptor type 9 (CCR9) activation by CCL25 plays a key role in leukocyte recruitment to the gut and represents a therapeutic target in inflammatory bowel disease. The selective CCR9 antagonist vercirnon progressed to phase 3 clinical trials in Crohn's disease but efficacy was limited, with the need for very high doses to block receptor activation. Here we report the crystal structure of the CCR9 receptor in complex with vercirnon at 2.8 Å resolution. Remarkably, vercirnon binds to the intracellular side of the receptor, exerting allosteric antagonism and preventing G-protein coupling. This binding site explains the need for relatively lipophilic ligands and describes another example of an allosteric site on G-protein-coupled receptors that can be targeted for drug design, not only at CCR9, but potentially extending to other chemokine receptors.


Assuntos
Receptores CCR/antagonistas & inibidores , Receptores CCR/química , Sulfonamidas/química , Sulfonamidas/farmacologia , Regulação Alostérica/efeitos dos fármacos , Sítio Alostérico/efeitos dos fármacos , Sítio Alostérico/genética , Sequência Conservada , Cristalografia por Raios X , Citoplasma/metabolismo , Desenho de Fármacos , Proteínas Heterotriméricas de Ligação ao GTP/antagonistas & inibidores , Proteínas Heterotriméricas de Ligação ao GTP/metabolismo , Humanos , Ligantes , Modelos Moleculares , Mutagênese , Receptores CCR/genética , Receptores CCR5/química , Receptores CXCR4/química
6.
Nature ; 533(7602): 274-7, 2016 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-27111510

RESUMO

Glucagon is a 29-amino-acid peptide released from the α-cells of the islet of Langerhans, which has a key role in glucose homeostasis. Glucagon action is transduced by the class B G-protein-coupled glucagon receptor (GCGR), which is located on liver, kidney, intestinal smooth muscle, brain, adipose tissue, heart and pancreas cells, and this receptor has been considered an important drug target in the treatment of diabetes. Administration of recently identified small-molecule GCGR antagonists in patients with type 2 diabetes results in a substantial reduction of fasting and postprandial glucose concentrations. Although an X-ray structure of the transmembrane domain of the GCGR has previously been solved, the ligand (NNC0640) was not resolved. Here we report the 2.5 Å structure of human GCGR in complex with the antagonist MK-0893 (ref. 4), which is found to bind to an allosteric site outside the seven transmembrane (7TM) helical bundle in a position between TM6 and TM7 extending into the lipid bilayer. Mutagenesis of key residues identified in the X-ray structure confirms their role in the binding of MK-0893 to the receptor. The unexpected position of the binding site for MK-0893, which is structurally similar to other GCGR antagonists, suggests that glucagon activation of the receptor is prevented by restriction of the outward helical movement of TM6 required for G-protein coupling. Structural knowledge of class B receptors is limited, with only one other ligand-binding site defined--for the corticotropin-releasing hormone receptor 1 (CRF1R)--which was located deep within the 7TM bundle. We describe a completely novel allosteric binding site for class B receptors, providing an opportunity for structure-based drug design for this receptor class and furthering our understanding of the mechanisms of activation of these receptors.


Assuntos
Pirazóis/metabolismo , Receptores de Glucagon/antagonistas & inibidores , Receptores de Glucagon/química , beta-Alanina/análogos & derivados , Sítio Alostérico/efeitos dos fármacos , Cristalografia por Raios X , Glucagon/metabolismo , Glucagon/farmacologia , Humanos , Ligantes , Bicamadas Lipídicas/química , Bicamadas Lipídicas/metabolismo , Modelos Moleculares , Conformação Proteica/efeitos dos fármacos , Pirazóis/química , Pirazóis/farmacologia , Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Glucagon/classificação , Receptores de Glucagon/metabolismo , beta-Alanina/química , beta-Alanina/metabolismo , beta-Alanina/farmacologia
7.
Nature ; 511(7511): 557-62, 2014 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-25042998

RESUMO

Metabotropic glutamate receptors are class C G-protein-coupled receptors which respond to the neurotransmitter glutamate. Structural studies have been restricted to the amino-terminal extracellular domain, providing little understanding of the membrane-spanning signal transduction domain. Metabotropic glutamate receptor 5 is of considerable interest as a drug target in the treatment of fragile X syndrome, autism, depression, anxiety, addiction and movement disorders. Here we report the crystal structure of the transmembrane domain of the human receptor in complex with the negative allosteric modulator, mavoglurant. The structure provides detailed insight into the architecture of the transmembrane domain of class C receptors including the precise location of the allosteric binding site within the transmembrane domain and key micro-switches which regulate receptor signalling. This structure also provides a model for all class C G-protein-coupled receptors and may aid in the design of new small-molecule drugs for the treatment of brain disorders.


Assuntos
Modelos Moleculares , Receptor de Glutamato Metabotrópico 5/química , Motivos de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Células HEK293 , Humanos , Estrutura Terciária de Proteína , Rodopsina/química
8.
Angew Chem Int Ed Engl ; 59(38): 16536-16543, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32542862

RESUMO

We present a robust protocol based on iterations of free energy perturbation (FEP) calculations, chemical synthesis, biophysical mapping and X-ray crystallography to reveal the binding mode of an antagonist series to the A2A adenosine receptor (AR). Eight A2A AR binding site mutations from biophysical mapping experiments were initially analyzed with sidechain FEP simulations, performed on alternate binding modes. The results distinctively supported one binding mode, which was subsequently used to design new chromone derivatives. Their affinities for the A2A AR were experimentally determined and investigated through a cycle of ligand-FEP calculations, validating the binding orientation of the different chemical substituents proposed. Subsequent X-ray crystallography of the A2A AR with a low and a high affinity chromone derivative confirmed the predicted binding orientation. The new molecules and structures here reported were driven by free energy calculations, and provide new insights on antagonist binding to the A2A AR, an emerging target in immuno-oncology.


Assuntos
Antagonistas de Receptores Purinérgicos P1/química , Receptor A2A de Adenosina/química , Termodinâmica , Sítios de Ligação/efeitos dos fármacos , Cristalografia por Raios X , Humanos , Modelos Moleculares , Estrutura Molecular , Antagonistas de Receptores Purinérgicos P1/farmacologia , Receptor A2A de Adenosina/metabolismo
9.
Nature ; 499(7459): 438-43, 2013 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-23863939

RESUMO

Structural analysis of class B G-protein-coupled receptors (GPCRs), cell-surface proteins that respond to peptide hormones, has been restricted to the amino-terminal extracellular domain, thus providing little understanding of the membrane-spanning signal transduction domain. The corticotropin-releasing factor receptor type 1 is a class B receptor which mediates the response to stress and has been considered a drug target for depression and anxiety. Here we report the crystal structure of the transmembrane domain of the human corticotropin-releasing factor receptor type 1 in complex with the small-molecule antagonist CP-376395. The structure provides detailed insight into the architecture of class B receptors. Atomic details of the interactions of the receptor with the non-peptide ligand that binds deep within the receptor are described. This structure provides a model for all class B GPCRs and may aid in the design of new small-molecule drugs for diseases of brain and metabolism.


Assuntos
Receptores de Hormônio Liberador da Corticotropina/química , Receptores de Hormônio Liberador da Corticotropina/classificação , Motivos de Aminoácidos , Sequência de Aminoácidos , Aminopiridinas/química , Aminopiridinas/metabolismo , Aminopiridinas/farmacologia , Sítios de Ligação , Sequência Conservada , Cristalografia por Raios X , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Receptores de Hormônio Liberador da Corticotropina/antagonistas & inibidores , Receptores de Hormônio Liberador da Corticotropina/metabolismo , Receptores de Dopamina D3/antagonistas & inibidores , Receptores de Dopamina D3/química , Receptores de Dopamina D3/classificação
10.
Mol Cell ; 34(6): 735-45, 2009 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-19446481

RESUMO

Rad9, Rad1, and Hus1 form a heterotrimeric complex (9-1-1) that is loaded onto DNA at sites of DNA damage. DNA-loaded 9-1-1 activates signaling through the Chk1 arm of the DNA damage checkpoint response via recruitment and stimulation of ATR. Additionally, 9-1-1 may play a direct role in facilitating DNA damage repair via interaction with a number of DNA repair enzymes. We have now determined the crystal structure of the human 9-1-1 complex, revealing a toroidal structure with a similar architecture to the homotrimeric PCNA DNA-binding clamp. The structure explains the formation of a unique heterotrimeric arrangement and reveals significant differences among the three subunits in the sites implicated in binding to the clamp loader and to ligand proteins. Biochemical analysis reveals a single repair enzyme-binding site on 9-1-1 that can be blocked competitively by the PCNA-binding cell-cycle regulator p21(cip1/waf1).


Assuntos
Proteínas de Ciclo Celular/química , Dano ao DNA , Exonucleases/química , Sítios de Ligação , Proteínas de Ciclo Celular/genética , Proteínas de Ciclo Celular/metabolismo , Cristalografia por Raios X , Inibidor de Quinase Dependente de Ciclina p15/metabolismo , Inibidor de Quinase Dependente de Ciclina p21/metabolismo , Reparo do DNA , Evolução Molecular , Exonucleases/genética , Exonucleases/metabolismo , Endonucleases Flap/metabolismo , Humanos , Modelos Moleculares , Filogenia , Processamento de Proteína Pós-Traducional , Estrutura Quaternária de Proteína , Subunidades Proteicas/química , Subunidades Proteicas/genética , Subunidades Proteicas/metabolismo
11.
Nat Commun ; 15(1): 3827, 2024 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-38714735

RESUMO

The main protease (Mpro) of SARS-CoV-2 is critical for viral function and a key drug target. Mpro is only active when reduced; turnover ceases upon oxidation but is restored by re-reduction. This suggests the system has evolved to survive periods in an oxidative environment, but the mechanism of this protection has not been confirmed. Here, we report a crystal structure of oxidized Mpro showing a disulfide bond between the active site cysteine, C145, and a distal cysteine, C117. Previous work proposed this disulfide provides the mechanism of protection from irreversible oxidation. Mpro forms an obligate homodimer, and the C117-C145 structure shows disruption of interactions bridging the dimer interface, implying a correlation between oxidation and dimerization. We confirm dimer stability is weakened in solution upon oxidation. Finally, we observe the protein's crystallization behavior is linked to its redox state. Oxidized Mpro spontaneously forms a distinct, more loosely packed lattice. Seeding with crystals of this lattice yields a structure with an oxidation pattern incorporating one cysteine-lysine-cysteine (SONOS) and two lysine-cysteine (NOS) bridges. These structures further our understanding of the oxidative regulation of Mpro and the crystallization conditions necessary to study this structurally.


Assuntos
Domínio Catalítico , Proteases 3C de Coronavírus , Cisteína , Dissulfetos , Oxirredução , SARS-CoV-2 , Dissulfetos/química , Dissulfetos/metabolismo , SARS-CoV-2/metabolismo , SARS-CoV-2/química , Proteases 3C de Coronavírus/metabolismo , Proteases 3C de Coronavírus/química , Cisteína/química , Cisteína/metabolismo , Cristalografia por Raios X , Humanos , Modelos Moleculares , Multimerização Proteica , COVID-19/virologia
12.
Curr Opin Struct Biol ; 80: 102601, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37182397

RESUMO

The past century has witnessed an exponential increase in our atomic-level understanding of molecular and cellular mechanisms from a structural perspective, with multiple landmark achievements contributing to the field. This, coupled with recent and continuing breakthroughs in artificial intelligence methods such as AlphaFold2, and enhanced computational power, is enabling our understanding of protein structure and function at unprecedented levels of accuracy and predictivity. Here, we describe some of the major recent advances across these fields, and describe, as these technologies coalesce, the potential to utilise our enhanced knowledge of intricate cellular and molecular systems to discover novel therapeutics to alleviate human suffering.


Assuntos
Inteligência Artificial , Biologia , Humanos
13.
Acta Crystallogr D Biol Crystallogr ; 68(Pt 7): 810-8, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22751666

RESUMO

A significant increase in the lifetime of room-temperature macromolecular crystals is reported through the use of a high-brilliance X-ray beam, reduced exposure times and a fast-readout detector. This is attributed to the ability to collect diffraction data before hydroxyl radicals can propagate through the crystal, fatally disrupting the lattice. Hydroxyl radicals are shown to be trapped in amorphous solutions at 100 K. The trend in crystal lifetime was observed in crystals of a soluble protein (immunoglobulin γ Fc receptor IIIa), a virus (bovine enterovirus serotype 2) and a membrane protein (human A(2A) adenosine G-protein coupled receptor). The observation of a similar effect in all three systems provides clear evidence for a common optimal strategy for room-temperature data collection and will inform the design of future synchrotron beamlines and detectors for macromolecular crystallography.


Assuntos
Cristalografia por Raios X/métodos , Enterovirus Bovino/química , Radical Hidroxila/química , Receptor A2A de Adenosina/química , Receptores de IgG/química , Infecções por Enterovirus/virologia , Humanos , Espectrofotometria Ultravioleta , Temperatura , Raios X
14.
J Immunother Cancer ; 8(2)2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32727810

RESUMO

Accumulation of extracellular adenosine within the microenvironment is a strategy exploited by tumors to escape detection by the immune system. Adenosine signaling through the adenosine 2A receptor (A2AR) on immune cells elicits a range of immunosuppressive effects which promote tumor growth and limit the efficacy of immune checkpoint inhibitors. Preclinical data with A2AR inhibitors have demonstrated tumor regressions in mouse models by rescuing T cell function; however, the mechanism and role on other immune cells has not been fully elucidated. METHODS: We report here the development of a small molecule A2AR inhibitor including characterization of binding and inhibition of A2AR function with varying amounts of a stable version of adenosine. Functional activity was tested in both mouse and human T cells and dendritic cells (DCs) in in vitro assays to understand the intrinsic role on each cell type. The role of adenosine and A2AR inhibition was tested in DC differentiation assays as well as co-culture assays to access the cross-priming function of DCs. Syngeneic models were used to assess tumor growth alone and in combination with alphaprogrammed death-ligand 1 (αPD-L1). Immunophenotyping by flow cytometry was performed to examine global immune cell changes upon A2AR inhibition. RESULTS: We provide the first report of AZD4635, a novel small molecule A2AR antagonist which inhibits downstream signaling and increases T cell function as well as a novel mechanism of enhancing antigen presentation by CD103+ DCs. The role of antigen presentation by DCs, particularly CD103+ DCs, is critical to drive antitumor immunity providing rational to combine a priming agent AZD4635 with check point blockade. We find adenosine impairs the maturation and antigen presentation function of CD103+ DCs. We show in multiple syngeneic mouse tumor models that treatment of AZD4635 alone and in combination with αPD-L1 led to decreased tumor volume correlating with enhanced CD103+ function and T cell response. We extend these studies into human DCs to show that adenosine promotes a tolerogenic phenotype that can be reversed with AZD4635 restoring antigen-specific T cell activation. Our results support the novel role of adenosine signaling as an intrinsic negative regulator of CD103+ DCs maturation and priming. We show that potent inhibition of A2AR with AZD4635 reduces tumor burden and enhances antitumor immunity. This unique mechanism of action in CD103+ DCs may contribute to clinical responses as AZD4635 is being evaluated in clinical trials with IMFINZI (durvalumab, αPD-L1) in patients with solid malignancies. CONCLUSION: We provide evidence implicating suppression of adaptive and innate immunity by adenosine as a mechanism for immune evasion by tumors. Inhibition of adenosine signaling through selective small molecule inhibition of A2AR using AZD4635 restores T cell function via an internal mechanism as well as tumor antigen cross-presentation by CD103+ DCs resulting in antitumor immunity.


Assuntos
Antígenos CD/metabolismo , Antineoplásicos Imunológicos/uso terapêutico , Células Dendríticas/imunologia , Cadeias alfa de Integrinas/metabolismo , Neoplasias/imunologia , Receptor A2A de Adenosina/metabolismo , Antineoplásicos Imunológicos/farmacologia , Linhagem Celular Tumoral , Feminino , Humanos , Masculino , Transdução de Sinais
15.
J Med Chem ; 63(4): 1528-1543, 2020 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-31860301

RESUMO

The orexin system, which consists of the two G protein-coupled receptors OX1 and OX2, activated by the neuropeptides OX-A and OX-B, is firmly established as a key regulator of behavioral arousal, sleep, and wakefulness and has been an area of intense research effort over the past two decades. X-ray structures of the receptors in complex with 10 new antagonist ligands from diverse chemotypes are presented, which complement the existing structural information for the system and highlight the critical importance of lipophilic hotspots and water molecules for these peptidergic GPCR targets. Learnings from the structural information regarding the utility of pharmacophore models and how selectivity between OX1 and OX2 can be achieved are discussed.


Assuntos
Antagonistas dos Receptores de Orexina/metabolismo , Receptores de Orexina/metabolismo , Sítios de Ligação , Simulação por Computador , Cristalografia por Raios X , Células HEK293 , Humanos , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Ligantes , Antagonistas dos Receptores de Orexina/química , Receptores de Orexina/química
16.
IUCrJ ; 7(Pt 6): 965-975, 2020 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-33209311

RESUMO

Long-wavelength pulses from the Swiss X-ray free-electron laser (XFEL) have been used for de novo protein structure determination by native single-wavelength anomalous diffraction (native-SAD) phasing of serial femtosecond crystallography (SFX) data. In this work, sensitive anomalous data-quality indicators and model proteins were used to quantify improvements in native-SAD at XFELs such as utilization of longer wavelengths, careful experimental geometry optimization, and better post-refinement and partiality correction. Compared with studies using shorter wavelengths at other XFELs and older software versions, up to one order of magnitude reduction in the required number of indexed images for native-SAD was achieved, hence lowering sample consumption and beam-time requirements significantly. Improved data quality and higher anomalous signal facilitate so-far underutilized de novo structure determination of challenging proteins at XFELs. Improvements presented in this work can be used in other types of SFX experiments that require accurate measurements of weak signals, for example time-resolved studies.

17.
Nat Commun ; 10(1): 17, 2019 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-30604743

RESUMO

Neurokinins (or tachykinins) are peptides that modulate a wide variety of human physiology through the neurokinin G protein-coupled receptor family, implicated in a diverse array of pathological processes. Here we report high-resolution crystal structures of the human NK1 receptor (NK1R) bound to two small-molecule antagonist therapeutics - aprepitant and netupitant and the progenitor antagonist CP-99,994. The structures reveal the detailed interactions between clinically approved antagonists and NK1R, which induce a distinct receptor conformation resulting in an interhelical hydrogen-bond network that cross-links the extracellular ends of helices V and VI. Furthermore, the high-resolution details of NK1R bound to netupitant establish a structural rationale for the lack of basal activity in NK1R. Taken together, these co-structures provide a comprehensive structural basis of NK1R antagonism and will facilitate the design of new therapeutics targeting the neurokinin receptor family.


Assuntos
Antagonistas dos Receptores de Neurocinina-1/química , Receptores da Neurocinina-1/química , Aprepitanto/química , Aprepitanto/farmacologia , Sítios de Ligação , Cristalografia por Raios X , Desenho de Fármacos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Antagonistas dos Receptores de Neurocinina-1/farmacologia , Piperidinas/química , Piperidinas/farmacologia , Estrutura Secundária de Proteína , Piridinas/química , Piridinas/farmacologia , Receptores da Neurocinina-1/isolamento & purificação , Receptores da Neurocinina-1/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismo , Relação Estrutura-Atividade
18.
Science ; 364(6442): 775-778, 2019 05 24.
Artigo em Inglês | MEDLINE | ID: mdl-31072904

RESUMO

G protein-coupled receptors (GPCRs) in the G protein-coupled active state have higher affinity for agonists as compared with when they are in the inactive state, but the molecular basis for this is unclear. We have determined four active-state structures of the ß1-adrenoceptor (ß1AR) bound to conformation-specific nanobodies in the presence of agonists of varying efficacy. Comparison with inactive-state structures of ß1AR bound to the identical ligands showed a 24 to 42% reduction in the volume of the orthosteric binding site. Potential hydrogen bonds were also shorter, and there was up to a 30% increase in the number of atomic contacts between the receptor and ligand. This explains the increase in agonist affinity of GPCRs in the active state for a wide range of structurally distinct agonists.


Assuntos
Agonistas de Receptores Adrenérgicos beta 1/química , Desenho de Fármacos , Receptores Acoplados a Proteínas G/agonistas , Agonistas de Receptores Adrenérgicos beta 1/farmacologia , Sítio Alostérico/imunologia , Domínio Catalítico/imunologia , Ligação de Hidrogênio , Ligantes , Ligação Proteica , Estrutura Secundária de Proteína , Receptores Adrenérgicos beta 1/química , Receptores Adrenérgicos beta 1/imunologia , Receptores Acoplados a Proteínas G/química , Receptores Acoplados a Proteínas G/imunologia , Anticorpos de Domínio Único/imunologia
19.
J Med Chem ; 62(1): 207-222, 2019 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-29455526

RESUMO

Two interesting new X-ray structures of negative allosteric modulator (NAM) ligands for the mGlu5 receptor, M-MPEP (3) and fenobam (4), are reported. The new structures show how the binding of the ligands induces different receptor water channel conformations to previously published structures. The structure of fenobam, where a urea replaces the acetylenic linker in M-MPEP and mavoglurant, reveals a binding mode where the ligand is rotated by 180° compared to a previously proposed docking model. The need for multiple ligand structures for accurate GPCR structure-based drug design is demonstrated by the different growing vectors identified for the head groups of M-MPEP and mavoglurant and by the unexpected water-mediated receptor interactions of a new chemotype represented by fenobam. The implications of the new structures for ligand design are discussed, with extensive analysis of the energetics of the water networks of both pseudoapo and bound structures providing a new design strategy for allosteric modulators.


Assuntos
Receptor de Glutamato Metabotrópico 5/química , Regulação Alostérica , Sítio Alostérico , Cristalografia por Raios X , Desenho de Fármacos , Humanos , Imidazóis/química , Imidazóis/metabolismo , Indóis/química , Indóis/metabolismo , Ligantes , Simulação de Acoplamento Molecular , Estrutura Terciária de Proteína , Piridinas/química , Piridinas/metabolismo , Receptor de Glutamato Metabotrópico 5/metabolismo , Tiazóis/química , Tiazóis/metabolismo , Água/química
20.
Nucleic Acids Res ; 34(16): 4515-26, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16945955

RESUMO

The archaeal/eukaryotic proliferating cell nuclear antigen (PCNA) toroidal clamp interacts with a host of DNA modifying enzymes, providing a stable anchorage and enhancing their respective processivities. Given the broad range of enzymes with which PCNA has been shown to interact, relatively little is known about the mode of assembly of functionally meaningful combinations of enzymes on the PCNA clamp. We have determined the X-ray crystal structure of the Sulfolobus solfataricus PCNA1-PCNA2 heterodimer, bound to a single copy of the flap endonuclease FEN1 at 2.9 A resolution. We demonstrate the specificity of interaction of the PCNA subunits to form the PCNA1-PCNA2-PCNA3 heterotrimer, as well as providing a rationale for the specific interaction of the C-terminal PIP-box motif of FEN1 for the PCNA1 subunit. The structure explains the specificity of the individual archaeal PCNA subunits for selected repair enzyme 'clients', and provides insights into the co-ordinated assembly of sequential enzymatic steps in PCNA-scaffolded DNA repair cascades.


Assuntos
Proteínas Arqueais/química , Endonucleases Flap/química , Modelos Moleculares , Antígeno Nuclear de Célula em Proliferação/química , Sulfolobus solfataricus/enzimologia , Proteínas Arqueais/genética , Cristalografia por Raios X , Análise Mutacional de DNA , Dimerização , Antígeno Nuclear de Célula em Proliferação/genética , Subunidades Proteicas/química , Subunidades Proteicas/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA