Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Biometals ; 29(3): 543-50, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27138944

RESUMO

Organoseleno-compounds have been investigated for its beneficial effects against methylmercury toxicity. In this way, diphenyl diselenide (PhSe)2 was demonstrated to decrease Hg accumulation in mice, protect against MeHg-induced mitochondrial dysfunction, and protect against the overall toxicity of this metal. In the present study we aimed to investigate if co-treatment with (PhSe)2 and MeHg could decrease accumulation of Hg in liver slices of rats. Rat liver slices were co-treated with (PhSe)2 (0.5; 5 µM) and/or MeHg (25 µM) for 30 min at 37 °C and Se and Hg levels were measured by inductively coupled plasma mass spectrometry (ICP-MS) in the slices homogenate, P1 fraction, mitochondria and incubation medium. Co-treatment with (PhSe)2 and MeHg did not significantly alter Se levels in any of the samples when compared with compounds alone. In addition, co-treatment with (PhSe)2 and MeHg did not decrease Hg levels in any of the samples tested, although, co-incubation significantly increased Hg levels in homogenate. We suggest here that (PhSe)2 could exert its previously demonstrated protective effects not by reducing MeHg levels, but forming a complex with MeHg avoiding it to bind to critical molecules in cell.


Assuntos
Derivados de Benzeno/farmacologia , Fígado/química , Fígado/efeitos dos fármacos , Mercúrio/análise , Compostos de Metilmercúrio/farmacologia , Compostos Organosselênicos/farmacologia , Selênio/análise , Animais , Derivados de Benzeno/administração & dosagem , Masculino , Espectrometria de Massas , Compostos de Metilmercúrio/administração & dosagem , Mitocôndrias Hepáticas/química , Mitocôndrias Hepáticas/efeitos dos fármacos , Mitocôndrias Hepáticas/metabolismo , Compostos Organosselênicos/administração & dosagem , Ratos , Ratos Wistar
2.
Toxicol Rep ; 3: 351-356, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-28959556

RESUMO

The effect of the antioxidant gallic acid (GA) on Pb toxicity in blood, liver and kidney was investigated in the present study. Rats Wistar received Pb nitrate (50 mg/Kg/day, i.p., 5 days) followed by GA (13.5 mg/Kg, p.o., 3 days) or a chelating agent (EDTA, 55 mg/Kg, i.p.). As result, Pb decreased body weight, hematocrit and blood δ-aminolevulinic acid dehydratase (ALA-D) activity. In addition, high Pb levels were observed in blood and tissues, together with increased (1) lipid peroxidation in erythrocytes, plasma and tissues, (2) protein oxidation in tissues and (3) plasma aspartate transaminase (AST) levels. These changes were accompanied by decreasing in antioxidant defenses, like superoxide dismutase (SOD) activity in tissues and catalase (CAT) activity and reduced glutathione (GSH) in liver. GA was able to reverse Pb-induced decrease in body weight and ALA-D activity, as well as Pb-induced oxidative damages and most antioxidant alterations, however it did not decrease Pb bioaccumulation herein as EDTA did. Furthermore, EDTA did not show antioxidant protection in Pb-treated animals as GA did. In conclusion, GA decreased Pb-induced oxidative damages not by decreasing Pb bioaccumulation, but by improving antioxidant defenses, thus GA may be promising in the treatment of Pb intoxications.

3.
Toxicol Lett ; 203(1): 74-81, 2011 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-21402136

RESUMO

We investigated the antioxidant potential of gallic acid (GA), a natural compound found in vegetal sources, on the motor and oxidative damages induced by lead. Rats exposed to lead (50 mg/kg, i.p., once a day, 5 days) were treated with GA (13.5mg/kg, p.o.) or EDTA (110 mg/kg, i.p.) daily, for 3 days. Lead exposure decreased the locomotor and exploratory activities, reduced blood ALA-D activity, and increased brain catalase (CAT) activity without altering other antioxidant defenses. Brain oxidative stress (OS) estimated by lipid peroxidation (TBARS) and protein carbonyl were increased by lead. GA reversed the motor behavior parameters, the ALA-D activity, as well as the markers of OS changed by lead exposure. CAT activity remained high, possibly as a compensatory mechanism to eliminate hydroperoxides during lead poisoning. EDTA, a conventional chelating agent, was not beneficial on the lead-induced motor behavior and oxidative damages. Both GA (less) and EDTA (more) reduced the lead accumulation in brain tissue. Negative correlations were observed between the behavioral parameters and lipid peroxidation and the lead levels in brain tissue. In conclusion, GA may be an adjuvant in lead exposure, mainly by its antioxidant properties against the motor and oxidative damages resulting from such poisoning.


Assuntos
Antioxidantes/farmacologia , Comportamento Animal/efeitos dos fármacos , Encéfalo/efeitos dos fármacos , Ácido Gálico/farmacologia , Intoxicação do Sistema Nervoso por Chumbo/prevenção & controle , Atividade Motora/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Animais , Encéfalo/metabolismo , Catalase/metabolismo , Quelantes/farmacologia , Modelos Animais de Doenças , Ácido Edético/farmacologia , Comportamento Exploratório/efeitos dos fármacos , Chumbo , Intoxicação do Sistema Nervoso por Chumbo/metabolismo , Intoxicação do Sistema Nervoso por Chumbo/fisiopatologia , Intoxicação do Sistema Nervoso por Chumbo/psicologia , Peroxidação de Lipídeos/efeitos dos fármacos , Masculino , Nitratos , Sintase do Porfobilinogênio/metabolismo , Carbonilação Proteica/efeitos dos fármacos , Ratos , Ratos Wistar
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA