Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Electrophoresis ; 38(2): 250-257, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27377397

RESUMO

This study describes a simple, rapid, and cost-effective fabrication of PDMS electrophoresis microchips using poly(vinyl acetate) (PVAc) emulsion as photoresist master. High-relief microfluidic structures were defined on poly(vinyl acetate) previously deposited on printed circuit boards surfaces without cleanroom facilities and sophisticated instrumentation. After a UV exposure, channels with heights ranging from 30 to 140 µm were obtained by controlling the emulsion mass deposited on the master surface. The developing stage was performed using water rather than the organic solvents that are applied for conventional masks. The surface morphology was characterized by optical imaging, profilometry, and SEM. Based on the achieved results, the proposed method offers suitable reproducibility for the prototyping of electrophoresis microchips in PDMS. The feasibility of the resulting PDMS electrophoresis chips was successfully demonstrated with the separation of major inorganic cations within 100 s using a contactless conductivity detection system. The separation efficiencies ranged from ca. 67 900 to 125 600 plates/m. Due to the satisfactory performance and simplified instrumentation, we believe this fabrication protocol presents potential to be implemented in any chemical, biochemical, or biological laboratory.


Assuntos
Dimetilpolisiloxanos/química , Eletroforese em Microchip/instrumentação , Desenho de Equipamento/métodos , Nylons/química , Polivinil/química , Condutividade Elétrica
2.
Talanta ; 162: 19-23, 2017 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-27837817

RESUMO

Here we report for the first time the use of an electronic micropipette as hydrodynamic (HD) injector for microchip electrophoresis (ME) devices. The micropipette was directly coupled to a PDMS device, which had been fabricated in a simple cross format with two auxiliary channels for sample volume splitting. Sample flow during the injection procedure was controlled in automatic dispenser mode using a volume of 0.6µL. Channel width and device configuration were optimized and the best results were achieved using a simple cross layout containing two auxiliary channels with 300µm width for sample splitting. The performance of the HD injector was evaluated using a model mixture of high-mobility cationic species. The results obtained were compared to the data obtained via electrokinetic (EK) injection. Overall, the HD provided better analytical performance in terms of resolution and injection-to-injection repeatability. The relative standard deviation (RSD) values for peak intensities were lower than 5% (n=10) when the micropipette was employed. In comparison with EK injection, the use of the proposed HD injector revealed an unbiased profile for a mixture containing K+ and Li+(300 µmol L-1 each) over various buffer concentrations. For EK injection, the peak areas decreased from 2.92 ± 0.20-0.72 ± 0.14Vs for K+ and from 1.30 ± 0.10-0.38 ± 0.10Vs for Li+ when the running buffer increased from 20 to 50mmolL-1. For HD injection, the peak areas for K+ and Li+ exhibited average values of 2.48±0.07 and 2.10±0.06Vs, respectively. The limits of detection (LDs) for K+, Na+ and Li+ ranged from 18 to 23µmolL-1. HD injection through an electronic micropipette allows to automatically dispense a bias-free amount of sample inside microchannels with acceptable repeatability. The proposed approach also exhibited instrumental simplicity, portability and minimal microfabrication requirements.


Assuntos
Eletroforese em Microchip/instrumentação , Eletroforese em Microchip/métodos , Hidrodinâmica , Desenho de Equipamento , Injeções , Lítio/administração & dosagem , Lítio/análise , Potássio/administração & dosagem , Potássio/análise , Reprodutibilidade dos Testes
3.
J Periodontol ; 87(1): 66-73, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26404581

RESUMO

BACKGROUND: Synthetic parathyroid hormone [PTH(1-34)] has been investigated for its benefits on bone healing and osteoporosis treatment; however, there is little information regarding bone grafts. This study therefore investigates the effect of PTH(1-34) on autogenous bone graft healing. METHODS: Bone grafts were harvested from the calvarium of rats with a trephine bur (3-mm internal diameter) and placed on the cortex near the mandible angle with a titanium screw. Animals were randomly assigned to group 1 (control): subcutaneous injections of saline solution, three times a week (n = 15); group 2: 2 µg/kg PTH(1-34), three times a week (n = 15); and group 3: 40 µg/kg PTH(1-34), three times a week (n = 15). Thirty days postoperatively, the animals were killed, and specimens (implant + bed + graft) were removed and used for undecalcified sections. The following histometric parameters were evaluated: total bone thickness (TT) (bed + gap + graft), graft thickness (GT) (adjacent to the implant), bone-to-implant contact (BIC), and bone area (BA) (within the limits of the threads). Five additional animals were sacrificed immediately after surgery (zero hour) to register bed and graft sizes before healing. RESULTS: Group 3 showed significantly greater bone gain compared with groups 1 and 2 (TT and GT, P <0.05). In relation to initial thickness (zero hour), groups 1 and 2 showed a total decrease in volume of 15.91% and 20.83%, respectively, whereas group 3 showed a slight bone gain (1.21%). Data analysis revealed a significant difference for group 3 compared with groups 1 and 2 (P <0.01). No differences were observed for BIC and BA (P >0.05). CONCLUSION: Systemic administration of PTH(1-34) augmented bone volume in autogenous grafts.


Assuntos
Osso e Ossos , Animais , Autoenxertos , Transplante Ósseo , Implantes Dentários , Osseointegração , Hormônio Paratireóideo , Ratos , Titânio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA