Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Commun Nonlinear Sci Numer Simul ; 116: None, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37113591

RESUMO

Computational models in cardiac electrophysiology are notorious for long runtimes, restricting the numbers of nodes and mesh elements in the numerical discretisations used for their solution. This makes it particularly challenging to incorporate structural heterogeneities on small spatial scales, preventing a full understanding of the critical arrhythmogenic effects of conditions such as cardiac fibrosis. In this work, we explore the technique of homogenisation by volume averaging for the inclusion of non-conductive micro-structures into larger-scale cardiac meshes with minor computational overhead. Importantly, our approach is not restricted to periodic patterns, enabling homogenised models to represent, for example, the intricate patterns of collagen deposition present in different types of fibrosis. We first highlight the importance of appropriate boundary condition choice for the closure problems that define the parameters of homogenised models. Then, we demonstrate the technique's ability to correctly upscale the effects of fibrotic patterns with a spatial resolution of 10 µm into much larger numerical mesh sizes of 100- 250 µm . The homogenised models using these coarser meshes correctly predict critical pro-arrhythmic effects of fibrosis, including slowed conduction, source/sink mismatch, and stabilisation of re-entrant activation patterns. As such, this approach to homogenisation represents a significant step towards whole organ simulations that unravel the effects of microscopic cardiac tissue heterogeneities.

2.
BMC Bioinformatics ; 21(Suppl 17): 551, 2020 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-33308151

RESUMO

BACKGROUND: An effective yellow fever (YF) vaccine has been available since 1937. Nevertheless, questions regarding its use remain poorly understood, such as the ideal dose to confer immunity against the disease, the need for a booster dose, the optimal immunisation schedule for immunocompetent, immunosuppressed, and pediatric populations, among other issues. This work aims to demonstrate that computational tools can be used to simulate different scenarios regarding YF vaccination and the immune response of individuals to this vaccine, thus assisting the response of some of these open questions. RESULTS: This work presents the computational results obtained by a mathematical model of the human immune response to vaccination against YF. Five scenarios were simulated: primovaccination in adults and children, booster dose in adult individuals, vaccination of individuals with autoimmune diseases under immunomodulatory therapy, and the immune response to different vaccine doses. Where data were available, the model was able to quantitatively replicate the levels of antibodies obtained experimentally. In addition, for those scenarios where data were not available, it was possible to qualitatively reproduce the immune response behaviours described in the literature. CONCLUSIONS: Our simulations show that the minimum dose to confer immunity against YF is half of the reference dose. The results also suggest that immunological immaturity in children limits the induction and persistence of long-lived plasma cells are related to the antibody decay observed experimentally. Finally, the decay observed in the antibody level after ten years suggests that a booster dose is necessary to keep immunity against YF.


Assuntos
Modelos Teóricos , Vacina contra Febre Amarela/imunologia , Febre Amarela/prevenção & controle , Adulto , Anticorpos Neutralizantes/sangue , Criança , Humanos , Sistema Imunitário , Imunização Secundária , Hospedeiro Imunocomprometido , Vacinação , Febre Amarela/imunologia
3.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190341, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448068

RESUMO

Ischaemia, in which inadequate blood supply compromises and eventually kills regions of cardiac tissue, can cause many types of arrhythmia, some life-threatening. A significant component of this is the effects of the resulting hypoxia, and concomitant hyperklaemia and acidosis, on the electrophysiological properties of myocytes. Clinical and experimental data have also shown that regions of structural heterogeneity (fibrosis, necrosis, fibro-fatty infiltration) can act as triggers for arrhythmias under acute ischaemic conditions. Mechanistic models have successfully captured these effects in silico. However, the relative significance of these separate facets of the condition, and how sensitive arrhythmic risk is to the extents of each, is far less explored. In this work, we use partitioned Gaussian process emulation and new metrics for source-sink mismatch that rely on simulations of bifurcating cardiac fibres to interrogate a model of heterogeneous ischaemic tissue. Re-entries were most sensitive to the level of hypoxia and the fraction of non-excitable tissue. In addition, our results reveal both protective and pro-arrhythmic effects of hyperklaemia, and present the levels of hyperklaemia, hypoxia and percentage of non-excitable tissue that pose the highest arrhythmic risks. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Sistema de Condução Cardíaco/fisiopatologia , Modelos Cardiovasculares , Isquemia Miocárdica/fisiopatologia , Sistema de Condução Cardíaco/patologia , Isquemia Miocárdica/patologia , Risco , Sístole
4.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190335, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448070

RESUMO

Models of electrical activation and recovery in cardiac cells and tissue have become valuable research tools, and are beginning to be used in safety-critical applications including guidance for clinical procedures and for drug safety assessment. As a consequence, there is an urgent need for a more detailed and quantitative understanding of the ways that uncertainty and variability influence model predictions. In this paper, we review the sources of uncertainty in these models at different spatial scales, discuss how uncertainties are communicated across scales, and begin to assess their relative importance. We conclude by highlighting important challenges that continue to face the cardiac modelling community, identifying open questions, and making recommendations for future studies. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiologia , Modelos Cardiovasculares , Incerteza , Coração/fisiopatologia , Humanos , Miocárdio/citologia , Miocárdio/patologia
5.
Philos Trans A Math Phys Eng Sci ; 378(2173): 20190349, 2020 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-32448065

RESUMO

Uncertainty quantification (UQ) is a vital step in using mathematical models and simulations to take decisions. The field of cardiac simulation has begun to explore and adopt UQ methods to characterize uncertainty in model inputs and how that propagates through to outputs or predictions; examples of this can be seen in the papers of this issue. In this review and perspective piece, we draw attention to an important and under-addressed source of uncertainty in our predictions-that of uncertainty in the model structure or the equations themselves. The difference between imperfect models and reality is termed model discrepancy, and we are often uncertain as to the size and consequences of this discrepancy. Here, we provide two examples of the consequences of discrepancy when calibrating models at the ion channel and action potential scales. Furthermore, we attempt to account for this discrepancy when calibrating and validating an ion channel model using different methods, based on modelling the discrepancy using Gaussian processes and autoregressive-moving-average models, then highlight the advantages and shortcomings of each approach. Finally, suggestions and lines of enquiry for future work are provided. This article is part of the theme issue 'Uncertainty quantification in cardiac and cardiovascular modelling and simulation'.


Assuntos
Fenômenos Eletrofisiológicos , Modelos Cardiovasculares , Calibragem , Canais Iônicos/metabolismo
6.
BMC Bioinformatics ; 20(Suppl 6): 532, 2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822264

RESUMO

BACKGROUND: Myocarditis is defined as the inflammation of the myocardium, i.e. the cardiac muscle. Among the reasons that lead to this disease, we may include infections caused by a virus, bacteria, protozoa, fungus, and others. One of the signs of the inflammation is the formation of edema, which may be a consequence of the interaction between interstitial fluid dynamics and immune response. This complex physiological process was mathematically modeled using a nonlinear system of partial differential equations (PDE) based on porous media approach. By combing a model based on Biot's poroelasticity theory with a model for the immune response we developed a new hydro-mechanical model for inflammatory edema. To verify this new computational model, T2 parametric mapping obtained by Magnetic Resonance (MR) imaging was used to identify the region of edema in a patient diagnosed with unspecific myocarditis. RESULTS: A patient-specific geometrical model was created using MRI images from the patient with myocarditis. With this model, edema formation was simulated using the proposed hydro-mechanical mathematical model in a two-dimensional domain. The computer simulations allowed us to correlate spatiotemporal dynamics of representative cells of the immune systems, such as leucocytes and the pathogen, with fluid accumulation and cardiac tissue deformation. CONCLUSIONS: This study demonstrates that the proposed mathematical model is a very promising tool to better understand edema formation in myocarditis. Simulations obtained from a patient-specific model reproduced important aspects related to the formation of cardiac edema, its area, position, and shape, and how these features are related to immune response.


Assuntos
Simulação por Computador , Edema , Imageamento por Ressonância Magnética/métodos , Miocardite , Medicina de Precisão/métodos , Biologia Computacional , Edema/diagnóstico por imagem , Edema/etiologia , Humanos , Interpretação de Imagem Assistida por Computador , Miocardite/complicações , Miocardite/diagnóstico por imagem
7.
Chaos ; 27(9): 093915, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28964124

RESUMO

Cardiac electrical alternans is a state of alternation between long and short action potentials and is frequently associated with harmful cardiac conditions. Different dynamic mechanisms can give rise to alternans; however, many cardiac models based on ordinary differential equations are not able to reproduce this phenomenon. A previous study showed that alternans can be induced by the introduction of delay differential equations (DDEs) in the formulations of the ion channel gating variables of a canine myocyte model. The present work demonstrates that this technique is not model-specific by successfully promoting alternans using DDEs for five cardiac electrophysiology models that describe different types of myocytes, with varying degrees of complexity. By analyzing results across the different models, we observe two potential requirements for alternans promotion via DDEs for ionic gates: (i) the gate must have a significant influence on the action potential duration and (ii) a delay must significantly impair the gate's recovery between consecutive action potentials.


Assuntos
Potenciais de Ação/fisiologia , Coração/fisiologia , Modelos Cardiovasculares , Animais , Cálcio/metabolismo , Cães , Ativação do Canal Iônico , Sódio/metabolismo
8.
J Theor Biol ; 404: 262-272, 2016 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-27302910

RESUMO

Cardiac electrical alternans is a period-2 dynamical behavior with alternating long and short action potential durations (APD) that often precedes dangerous arrhythmias associated with cardiac arrest. Despite the importance of alternans, many current ordinary differential equations models of cardiac electrophysiology do not produce alternans, thereby limiting the use of these models for studying the mechanisms that underlie this condition. Because delay differential equations (DDEs) commonly induce complex dynamics in other biological systems, we investigate whether incorporating DDEs can lead to alternans development in cardiac models by studying the Fox et al. canine ventricular action potential model. After suppressing the alternans in the original model, we show that alternans can be obtained by introducing DDEs in the model gating variables, and we quantitatively compare the DDE-induced alternans with the alternans present in the original model. We analyze the behavior of the voltage, currents, and gating variables of the model to study the effects of the delays and to determine how alternans develops in that setting, and we discuss the mathematical and physiological implications of our findings. In future work, we aim to apply our approach to induce alternans in models that do not naturally exhibit such dynamics.


Assuntos
Potenciais de Ação/fisiologia , Eletrofisiologia , Coração/fisiologia , Modelos Neurológicos , Animais , Canais de Cálcio Tipo L/metabolismo , Cães , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Fatores de Tempo
9.
Sci Rep ; 13(1): 11828, 2023 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-37481668

RESUMO

This paper uses recurrence quantification analysis (RQA) combined with entropy measures and organization indices to characterize arrhythmic patterns and dynamics in computer simulations of cardiac tissue. We performed different simulations of cardiac tissues of sizes comparable to the human heart atrium. In these simulations, we observed four classic arrhythmic patterns: a spiral wave anchored to a highly fibrotic region resulting in sustained re-entry, a meandering spiral wave, fibrillation, and a spiral wave anchored to a scar region that breaks up into wavelets away from the main rotor. A detailed analysis revealed that, within the same simulation, maps of RQA metrics could differentiate regions with regular AP propagation from ones with chaotic activity. In particular, the combination of two RQA metrics, the length of the longest diagonal string of recurrence points and the mean length of diagonal lines, was able to identify the location of rotor tips, which are the active elements that maintain spiral waves and fibrillation. By proposing low-dimensional models based on the mean value and spatial correlation of metrics calculated from membrane potential time series, we identify RQA-based metrics that successfully separate the four different types of cardiac arrhythmia into distinct regions of the feature space, and thus might be used for automatic classification, in particular distinguishing between fibrillation driven by self-sustaining chaos and that created by a persistent rotor and wavebreak. We also discuss the practical applicability of such an approach.


Assuntos
Benchmarking , Átrios do Coração , Humanos , Doença do Sistema de Condução Cardíaco , Cicatriz , Simulação por Computador
10.
Sci Rep ; 13(1): 11788, 2023 07 21.
Artigo em Inglês | MEDLINE | ID: mdl-37479707

RESUMO

Cardiac Purkinje networks are a fundamental part of the conduction system and are known to initiate a variety of cardiac arrhythmias. However, patient-specific modeling of Purkinje networks remains a challenge due to their high morphological complexity. This work presents a novel method based on optimization principles for the generation of Purkinje networks that combines geometric and activation accuracy in branch size, bifurcation angles, and Purkinje-ventricular-junction activation times. Three biventricular meshes with increasing levels of complexity are used to evaluate the performance of our approach. Purkinje-tissue coupled monodomain simulations are executed to evaluate the generated networks in a realistic scenario using the most recent Purkinje/ventricular human cellular models and physiological values for the Purkinje-ventricular-junction characteristic delay. The results demonstrate that the new method can generate patient-specific Purkinje networks with controlled morphological metrics and specified local activation times at the Purkinje-ventricular junctions.


Assuntos
Benchmarking , Coração , Humanos , Doença do Sistema de Condução Cardíaco , Sistema de Condução Cardíaco , Ventrículos do Coração
11.
PLoS One ; 17(4): e0266233, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35381041

RESUMO

The development of modeling structures at the channel level that can integrate subcellular and cell models and properly reproduce different experimental data is of utmost importance in cardiac electrophysiology. In contrast to gate-based models, Markov Chain models are well suited to promote the integration of the subcellular level of the cardiomyocyte to the whole cell. In this paper, we develop Markov Chain models for the L-type Calcium current that can reproduce the electrophysiology of two established human models for the ventricular and Purkinje cells. In addition, instead of presenting a single set of parameters, we present a collection of set of parameters employing Differential Evolution algorithms that can properly reproduce very different protocol data. We show the importance of using an ensemble of a set of parameter values to obtain proper results when considering a second protocol that suppresses calcium inactivation and mimics a pathological condition. We discuss how model discrepancy, data availability, and parameter identifiability can influence the choice of the size of the collection. In summary, we have modified two cardiac models by proposing new Markov Chain models for the L-type Calcium. We keep the original whole-cell dynamics by reproducing the same characteristic action potential and calcium dynamics, whereas the Markov chain-based description of the L-type Calcium channels allows novel small spatial scale simulations of subcellular processes. Finally, the use of collections of parameters was crucial for addressing model discrepancy, identifiability issues, and avoiding fitting parameters overly precisely, i.e., overfitting.


Assuntos
Canais de Cálcio Tipo L , Cálcio , Miócitos Cardíacos , Potenciais de Ação , Cálcio/metabolismo , Canais de Cálcio Tipo L/fisiologia , Humanos , Cadeias de Markov , Miócitos Cardíacos/metabolismo
12.
Front Physiol ; 13: 888515, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860652

RESUMO

Myocarditis is a general set of mechanisms that manifest themselves into the inflammation of the heart muscle. In 2017, more than 3 million people were affected by this disease worldwide, causing about 47,000 deaths. Many aspects of the origin of this disease are well known, but several important questions regarding the disease remain open. One of them is why some patients develop a significantly localised inflammation while others develop a much more diffuse inflammation, reaching across large portions of the heart. Furthermore, the specific role of the pathogenic agent that causes inflammation as well as the interaction with the immune system in the progression of the disease are still under discussion. Providing answers to these crucial questions can have an important impact on patient treatment. In this scenario, computational methods can aid specialists to understand better the relationships between pathogens and the immune system and elucidate why some patients develop diffuse myocarditis. This paper alters a recently developed model to study the myocardial oedema formation in acute infectious myocarditis. The model describes the finite deformation regime using partial differential equations to represent tissue displacement, fluid pressure, fluid phase, and the concentrations of pathogens and leukocytes. A sensitivity analysis was performed to understand better the influence of the most relevant model parameters on the disease dynamics. The results showed that the poroelastic model could reproduce local and diffuse myocarditis dynamics in simplified and complex geometrical domains.

13.
Front Physiol ; 12: 709485, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34483962

RESUMO

Cardiac fibrosis and other scarring of the heart, arising from conditions ranging from myocardial infarction to ageing, promotes dangerous arrhythmias by blocking the healthy propagation of cardiac excitation. Owing to the complexity of the dynamics of electrical signalling in the heart, however, the connection between different arrangements of blockage and various arrhythmic consequences remains poorly understood. Where a mechanism defies traditional understanding, machine learning can be invaluable for enabling accurate prediction of quantities of interest (measures of arrhythmic risk) in terms of predictor variables (such as the arrangement or pattern of obstructive scarring). In this study, we simulate the propagation of the action potential (AP) in tissue affected by fibrotic changes and hence detect sites that initiate re-entrant activation patterns. By separately considering multiple different stimulus regimes, we directly observe and quantify the sensitivity of re-entry formation to activation sequence in the fibrotic region. Then, by extracting the fibrotic structures around locations that both do and do not initiate re-entries, we use neural networks to determine to what extent re-entry initiation is predictable, and over what spatial scale conduction heterogeneities appear to act to produce this effect. We find that structural information within about 0.5 mm of a given point is sufficient to predict structures that initiate re-entry with more than 90% accuracy.

14.
Front Public Health ; 9: 623521, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33796495

RESUMO

Over the last months, mathematical models have been extensively used to help control the COVID-19 pandemic worldwide. Although extremely useful in many tasks, most models have performed poorly in forecasting the pandemic peaks. We investigate this common pitfall by forecasting four countries' pandemic peak: Austria, Germany, Italy, and South Korea. Far from the peaks, our models can forecast the pandemic dynamics 20 days ahead. Nevertheless, when calibrating our models close to the day of the pandemic peak, all forecasts fail. Uncertainty quantification and sensitivity analysis revealed the main obstacle: the misestimation of the transmission rate. Inverse uncertainty quantification has shown that significant changes in transmission rate commonly precede a peak. These changes are a key factor in forecasting the pandemic peak. Long forecasts of the pandemic peak are therefore undermined by the lack of models that can forecast changes in the transmission rate, i.e., how a particular society behaves, changes of mitigation policies, or how society chooses to respond to them. In addition, our studies revealed that even short forecasts of the pandemic peak are challenging. Backward projections have shown us that the correct estimation of any temporal change in the transmission rate is only possible many days ahead. Our results suggest that the distance between a change in the transmission rate and its correct identification in the curve of active infected cases can be as long as 15 days. This is intrinsic to the phenomenon and how it affects epidemic data: a new case is usually only reported after an incubation period followed by a delay associated with the test. In summary, our results suggest the phenomenon itself challenges the task of forecasting the peak of the COVID-19 pandemic when only epidemic data is available. Nevertheless, we show that exciting results can be obtained when using the same models to project different scenarios of reduced transmission rates. Therefore, our results highlight that mathematical modeling can help control COVID-19 pandemic by backward projections that characterize the phenomena' essential features and forward projections when different scenarios and strategies can be tested and used for decision-making.


Assuntos
COVID-19/epidemiologia , Previsões , Modelos Teóricos , Áustria/epidemiologia , COVID-19/transmissão , Alemanha/epidemiologia , Humanos , Itália/epidemiologia , Pandemias , República da Coreia/epidemiologia
15.
Front Cell Infect Microbiol ; 11: 711153, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34869049

RESUMO

Cell-based mathematical models have previously been developed to simulate the immune system in response to pathogens. Mathematical modeling papers which study the human immune response to pathogens have predicted concentrations of a variety of cells, including activated and resting macrophages, plasma cells, and antibodies. This study aims to create a comprehensive mathematical model that can predict cytokine levels in response to a gram-positive bacterium, S. aureus by coupling previous models. To accomplish this, the cytokines Tumor Necrosis Factor Alpha (TNF-α), Interleukin 6 (IL-6), Interleukin 8 (IL-8), and Interleukin 10 (IL-10) are included to quantify the relationship between cytokine release from macrophages and the concentration of the pathogen, S. aureus, ex vivo. Partial differential equations (PDEs) are used to model cellular response and ordinary differential equations (ODEs) are used to model cytokine response, and interactions between both components produce a more robust and more complete systems-level understanding of immune activation. In the coupled cellular and cytokine model outlined in this paper, a low concentration of S. aureus is used to stimulate the measured cellular response and cytokine expression. Results show that our cellular activation and cytokine expression model characterizing septic conditions can predict ex vivo mechanisms in response to gram-negative and gram-positive bacteria. Our simulations provide new insights into how the human immune system responds to infections from different pathogens. Novel applications of these insights help in the development of more powerful tools and protocols in infection biology.


Assuntos
Infecções Estafilocócicas , Staphylococcus aureus , Citocinas , Humanos , Modelos Teóricos , Fator de Necrose Tumoral alfa
16.
Int J Numer Method Biomed Eng ; 36(7): e3341, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32293783

RESUMO

Numerical methods for solving the cardiac electrophysiology model, which describes the electrical activity in the heart, are proposed. The model problem consists of a nonlinear reaction-diffusion partial differential equation coupled to systems of ordinary differential equations that describes electrochemical reactions in cardiac cells. The proposed methods combine an operator splitting technique for the reaction-diffusion equation with primal hybrid methods for spatial discretization considering continuous or discontinuous approximations for the Lagrange multiplier. A static condensation is adopted to form a reduced global system in terms of the multiplier only. Convergence studies exhibit optimal rates of convergence and numerical experiments show that the proposed schemes can be more efficient than standard numerical techniques commonly used in this context when preconditioned iterative methods are used for the solution of linear systems.


Assuntos
Eletrofisiologia Cardíaca , Análise de Elementos Finitos , Coração
18.
Front Physiol ; 9: 764, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29988469

RESUMO

During cardiac diseases many types of anatomical and functional remodeling of cardiac tissue can occur. In this work, we focus on two conditions: hypoxia and fibrosis, which are part of complex pathological modifications that take place in many cardiac diseases (hypertrophic cardiomyopathy, hypertensive heart disease, and recurrent myocardial infarction) and respiratory diseases (obstructive pulmonary disease, obstructive sleep apnea, and cystic fibrosis). Using computational models of cardiac electrophysiology, we evaluate if the interplay between hypoxia and fibrosis is sufficient to trigger cardiac arrhythmia. We study the mechanisms behind the generation of ectopic beats, an arrhythmic trigger also known as premature ventricular contractions (PVCs), in regions with high hypoxia and fibrosis. First, we modify an electrophysiological model of myocytes of the human left ventricle to include the effects of hypoxia. Second, diffuse fibrosis is modeled by randomly replacing cardiac myocytes by non-excitable and non-conducting cells. The Monte Carlo method is used to evaluate the probability of a region to generate ectopic beats with respect to different levels of hypoxia and fibrosis. In addition, we evaluate the minimum size of three-dimensional slabs needed to sustain reentries for different stimulation protocols. The observed mechanism behind the initiation of ectopic beats is unidirectional block, giving rise to sustained micro-reentries inside the region with diffuse fibrosis and hypoxia. In summary, our results suggest that hypoxia and fibrosis are sufficient for the creation of a focal region in the heart that generates PVCs.

19.
Int J Numer Method Biomed Eng ; 34(4): e2948, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29181888

RESUMO

Computational modeling of the heart is a subject of substantial medical and scientific interest, which may contribute to increase the understanding of several phenomena associated with cardiac physiological and pathological states. Modeling the mechanics of the heart have led to considerable insights, but it still represents a complex and a demanding computational problem, especially in a strongly coupled electromechanical setting. Passive cardiac tissue is commonly modeled as hyperelastic and is characterized by quasi-incompressible, orthotropic, and nonlinear material behavior. These factors are known to be very challenging for the numerical solution of the model. The near-incompressibility is known to cause numerical issues such as the well-known locking phenomenon and ill-conditioning of the stiffness matrix. In this work, the augmented Lagrangian method is used to handle the nearly incompressible condition. This approach can potentially improve computational performance by reducing the condition number of the stiffness matrix and thereby improving the convergence of iterative solvers. We also improve the performance of iterative solvers by the use of an algebraic multigrid preconditioner. Numerical results of the augmented Lagrangian method combined with a preconditioned iterative solver for a cardiac mechanics benchmark suite are presented to show its improved performance.


Assuntos
Algoritmos , Coração/fisiologia , Simulação por Computador , Humanos , Análise Numérica Assistida por Computador
20.
Sci Rep ; 8(1): 16392, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30401912

RESUMO

Ectopic beats are known to be involved in the initiation of a variety of cardiac arrhythmias. Although their location may vary, ectopic excitations have been found to originate from infarct areas, regions of micro-fibrosis and other heterogeneous tissues. However, the underlying mechanisms that link ectopic foci to heterogeneous tissues have yet to be fully understood. In this work, we investigate the mechanism of micro-reentry that leads to the generation of ectopic beats near infarct areas using a patient-specific heart model. The patient-specific geometrical model of the heart, including scar and peri-infarct zones, is obtained through magnetic resonance imaging (MRI). The infarct region is composed of ischemic myocytes and non-conducting cells (fibrosis, for instance). Electrophysiology is captured using an established cardiac myocyte model of the human ventricle modified to describe ischemia. The simulation results clearly reveal that ectopic beats emerge from micro-reentries that are sustained by the heterogeneous structure of the infarct regions. Because microscopic information about the heterogeneous structure of the infarct regions is not available, Monte-Carlo simulations are used to identify the probabilities of an infarct region to behave as an ectopic focus for different levels of ischemia and different percentages of non-conducting cells. From the proposed model, it is observed that ectopic beats are generated when a percentage of non-conducting cells is near a topological metric known as the percolation threshold. Although the mechanism for micro-reentries was proposed half a century ago to be a source of ectopic beats or premature ventricular contractions during myocardial infarction, the present study is the first to reproduce this mechanism in-silico using patient-specific data.


Assuntos
Fenômenos Eletrofisiológicos , Coração/fisiopatologia , Infarto do Miocárdio/fisiopatologia , Modelagem Computacional Específica para o Paciente , Potenciais de Ação , Estudos de Viabilidade , Ventrículos do Coração/fisiopatologia , Humanos , Imageamento por Ressonância Magnética , Modelos Cardiovasculares , Método de Monte Carlo , Infarto do Miocárdio/diagnóstico por imagem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA