Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Appl Opt ; 62(8): C80-C87, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-37133062

RESUMO

Breast cancer (BC) molecular subtypes diagnosis involves improving clinical uptake by Fourier transform infrared (FTIR) spectroscopic imaging, which is a non-destructive and powerful technique, enabling label free extraction of biochemical information towards prognostic stratification and evaluation of cell functionality. However, methods of measurements of samples demand a long time to achieve high quality images, making its clinical use impractical because of the data acquisition speed, poor signal to noise ratio, and deficiency of optimized computational framework procedures. To address those challenges, machine learning (ML) tools can facilitate obtaining an accurate classification of BC subtypes with high actionability and accuracy. Here, we propose a ML-algorithm-based method to distinguish computationally BC cell lines. The method is developed by coupling the K-neighbors classifier (KNN) with neighborhood components analysis (NCA), and hence, the NCA-KNN method enables to identify BC subtypes without increasing model size as well as adding additional computational parameters. By incorporating FTIR imaging data, we show that classification accuracy, specificity, and sensitivity improve, respectively, 97.5%, 96.3%, and 98.2%, even at very low co-added scans and short acquisition times. Moreover, a clear distinctive accuracy (up to 9 %) difference of our proposed method (NCA-KNN) was obtained in comparison with the second best supervised support vector machine model. Our results suggest a key diagnostic NCA-KNN method for BC subtypes classification that may translate to advancement of its consolidation in subtype-associated therapeutics.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico por imagem , Espectroscopia de Infravermelho com Transformada de Fourier , Análise de Fourier , Algoritmos , Aprendizado de Máquina , Máquina de Vetores de Suporte
2.
Pharm Res ; 36(10): 143, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31385111

RESUMO

PURPOSE: Pancreatic Polypeptide-secreting tumor of the distal pancreas (PPoma) is a rare, difficult and indolent type of cancer with a survival rate of 5-year in only 10% of all cases. The PPoma is classified as a neuroendocrine tumor (NET) not functioning that overexpresses SSTR 2 (somatostatin receptor subtype 2). Thus, in order to improve the diagnosis of this type of tumor, we developed nanoparticulate drug carriers based on poly-lactic acid (PLA) polymer loaded with octreotide and radiolabeled with Technetium-99 m (99mTc). METHODS: PLA/PVA octreotide nanoparticles were developed by double-emulsion technique. These nanoparticles were characterized by Atomic Force Microscopy (AFM) and Dynamic Light Scattering (DLS) and radiolabeled with 99mTc by the direct via forming 99mTc-PLA/PVA octreotide nanoparticles. The safety of these nanosystems was evaluated by the MTT cell toxicity assay and their in vivo biodistribution was evaluated in xenografted inducted animals. RESULTS: The results showed that a 189 nm sized nanoparticle were formed with a PDI of 0,097, corroborating the monodispersive behavior. These nanoparticles were successfully radiolabeled with 99mTc showing uptake by the inducted tumor. The MTT assay corroborated the safety of the nanosystem for the cells. CONCLUSION: The results support the use of this nanosystem (99mTc-PLA/PVA octreotide nanoparticles) as imaging agent for PPoma. Graphical Abstract Polypeptide-Secreting Tumor of the Distal Pancreas (PPoma) Radiolabeled Nanoparticles for Imaging.


Assuntos
Carcinoma Ductal Pancreático/diagnóstico por imagem , Nanopartículas/química , Octreotida/química , Neoplasias Pancreáticas/diagnóstico por imagem , Polipeptídeo Pancreático/metabolismo , Poliésteres/química , Compostos Radiofarmacêuticos/química , Tecnécio/química , Animais , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Nanopartículas/metabolismo , Octreotida/metabolismo , Pâncreas/diagnóstico por imagem , Pâncreas/metabolismo , Neoplasias Pancreáticas/metabolismo , Tamanho da Partícula , Cintilografia/métodos , Compostos Radiofarmacêuticos/metabolismo , Receptores de Somatostatina/genética , Receptores de Somatostatina/metabolismo , Distribuição Tecidual , Neoplasias Pancreáticas
3.
Pharm Res ; 34(12): 2922-2930, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29063342

RESUMO

PURPOSE: The purpose of this article was to develop, characterize and test (in vivo) dacarbazine microparticles that may be labeled with 99mTc and Ra-223 for both use: diagnostic and therapy of metastatic melanoma. METHODS: We developed by double emulsion solvent evaporation methodology the microparticle. The characterization has been done using, Dynamic Light Scattering (DLS) and Scanning Electron Microscopy (SEM). The labeling with 99mTc and Ra-223 has been done by the direct labeling process. Also the formulation has been tested pre-clinically using Balb/c mice inducted with melanoma, performing the the biodistribution and planar imaging. Cytotoxicity evaluation was also done in M3 V cell line. In order to understand the safety aspects of the microparticles, microbiological study (endotoxin and sterility) has been done. Finally, planar imaging was performed to evaluate the diagnosing aspect. RESULTS: The results showed that a 559 nm microparticles was obtained with a spherical shape. The labeling process with 99mTc reached over 90% of efficacy. On the other hand, the labeling process with Ra-223 showed a 70% efficacy. The results in inducted animals demonstrated that the microparticles were able to reach the tumor with a high rate (20%). Also demonstrated a low recognition by the Mononuclear Phagocytic System. The cytotoxicity and the microbiological control, corroborates the safety aspect of these microparticles. CONCLUSION: The planar image and the possible labeling with Ra-223, corroborates the use as a theragnostic agent for imaging and therapy of Metastatic Melanoma.


Assuntos
Antineoplásicos Alquilantes/uso terapêutico , Dacarbazina/uso terapêutico , Melanoma/diagnóstico , Melanoma/tratamento farmacológico , Rádio (Elemento)/uso terapêutico , Tecnécio/uso terapêutico , Animais , Antineoplásicos Alquilantes/farmacocinética , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Dacarbazina/farmacocinética , Sistemas de Liberação de Medicamentos , Feminino , Camundongos Endogâmicos BALB C , Camundongos Nus , Rádio (Elemento)/farmacocinética , Tecnécio/farmacocinética , Distribuição Tecidual
4.
Spectrochim Acta A Mol Biomol Spectrosc ; 310: 123941, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38290283

RESUMO

Fourier-transform infrared spectroscopy (FTIR) is a powerful, non-destructive, highly sensitive and a promising analytical technique to provide spectrochemical signatures of biological samples, where markers like carbohydrates, proteins, and phosphate groups of DNA can be recognized in biological micro-environment. However, method of measurements of large cells need an excessive time to achieve high quality images, making its clinical use difficult due to speed of data-acquisition and lack of optimized computational procedures. To address such challenges, Machine Learning (ML) based technologies can assist to assess an accurate prognostication of breast cancer (BC) subtypes with high performance. Here, we applied FTIR spectroscopy to identify breast cancer subtypes in order to differentiate between luminal (BT474) and non-luminal (SKBR3) molecular subtypes. For this reason, we tested multivariate classification technique to extract feature information employing three-dimension (3D)-discriminant analysis approach based on 3D-principle component analysis-linear discriminant analysis (3D-PCA-LDA) and 3D-principal component analysis-quadratic discriminant analysis (3D-PCA-QDA), showing an improvement in sensitivity (98%), specificity (94%) and accuracy (98%) parameters compared to conventional unfolded methods. Our results evidence that 3D-PCA-LDA and 3D-PCA-QDA are potential tools for discriminant analysis of hyperspectral dataset to obtain superior classification assessment.


Assuntos
Neoplasias da Mama , Humanos , Feminino , Neoplasias da Mama/diagnóstico , Espectroscopia de Infravermelho com Transformada de Fourier/métodos , Análise Discriminante , Análise de Componente Principal , Aprendizado de Máquina , Microambiente Tumoral
5.
Nucl Med Biol ; 124-125: 108383, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37651917

RESUMO

BACKGROUND: Tumour hypoxia is associated with increased metastasis, invasion, poor therapy response and prognosis. Most PET radiotracers developed and used for clinical hypoxia imaging belong to the 2-nitroimidazole family. Recently we have developed novel 2-nitroimidazole-derived PET radiotracer [18F]FBNA (N-(4-[18F]fluoro-benzyl)-2-(2-nitro-1H-imidazol-1-yl)-acet-amide), an 18F-labeled analogue of antiparasitic drug benznidazole. The present study aimed to analyze its radio-pharmacological properties and systematically compare its PET imaging profiles with [18F]FMISO and [18F]FAZA in preclinical triple-negative (MDA-MB231) and estrogen receptor-positive (MCF-7) breast cancer models. METHODS: In vitro cellular uptake experiments were carried out in MDA-MB321 and MCF-7 cells under normoxic and hypoxic conditions. Metabolic stability in vivo was determined in BALB/c mice using radio-TLC analysis. Dynamic PET experiments over 3 h post-injection were performed in MDA-MB231 and MCF-7 tumour-bearing mice. Those PET data were used for kinetic modelling analysis utilizing the reversible two-tissue-compartment model. Autoradiography was carried out in tumour tissue slices and compared to HIF-1α immunohistochemistry. Detailed ex vivo biodistribution was accomplished in BALB/c mice, and this biodistribution data were used for dosimetry calculation. RESULTS: Under hypoxic conditions in vitro cellular uptake was elevated in both cell lines, MCF-7 and MDA-MB231, for all three radiotracers. After intravenous injection, [18F]FBNA formed two radiometabolites, resulting in a final fraction of 65 ± 9 % intact [18F]FBNA after 60 min p.i. After 3 h p.i., [18F]FBNA tumour uptake reached SUV values of 0.78 ± 0.01 in MCF-7 and 0.61 ± 0.04 in MDA-MB231 tumours (both n = 3), representing tumour-to-muscle ratios of 2.19 ± 0.04 and 1.98 ± 0.15, respectively. [18F]FMISO resulted in higher tumour uptakes (SUV 1.36 ± 0.04 in MCF-7 and 1.23 ± 0.08 in MDA-MB231 (both n = 4; p < 0.05) than [18F]FAZA (0.66 ± 0.11 in MCF-7 and 0.63 ± 0.14 in MDA-MB231 (both n = 4; n.s.)), representing tumour-to-muscle ratios of 3.24 ± 0.30 and 3.32 ± 0.50 for [18F]FMISO, and 2.92 ± 0.74 and 3.00 ± 0.42 for [18F]FAZA, respectively. While the fraction per time of radiotracer entering the second compartment (k3) was similar within uncertainties for all three radiotracers in MDA-MB231 tumours, it was different in MCF-7 tumours. The ratios k3/(k3 + k2) and K1*k3/(k3 + k2) in MCF-7 tumours were also significantly different, indicating dissimilar fractions of radiotracer bound and trapped intracellularly: K1*k3/(k2 + k3) [18F]FMISO (0.0088 ± 0.001)/min, n = 4; p < 0.001) > [18F]FAZA (0.0052 ± 0.002)/min, n = 4; p < 0.01) > [18F]FBNA (0.003 ± 0.001)/min, n = 3). In contrast, in MDA-MB231 tumours, only K1 was significantly elevated for [18F]FMISO. However, this did not result in significant differences for K1*k3/(k2 + k3) for all three 2-nitroimidazoles in MDA-MB231 tumours. CONCLUSION: Novel 2-nitroimidazole PET radiotracer [18F]FBNA showed uptake into hypoxic breast cancer cells and tumour tissue presumably associated with elevated HIF1-α expression. Systematic comparison of PET imaging performance with [18F]FMISO and [18F]FAZA in different types of preclinical breast cancer models revealed a similar tumour uptake profile for [18F]FBNA with [18F]FAZA and, despite its higher lipophilicity, still a slightly higher muscle tissue clearance compared to [18F]FMISO.


Assuntos
Neoplasias da Mama , Nitroimidazóis , Humanos , Camundongos , Animais , Feminino , Neoplasias da Mama/diagnóstico por imagem , Xenoenxertos , Distribuição Tecidual , Nitroimidazóis/química , Hipóxia , Tomografia por Emissão de Pósitrons/métodos , Hipóxia Celular , Compostos Radiofarmacêuticos
6.
Methods Mol Biol ; 2442: 339-352, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35320534

RESUMO

Molecular imaging (MI) is a non-invasive growing technology that allows the investigation of cellular and molecular processes in basic and clinical research and medicine. Luminescent proteins and radionuclides can be associated to target molecules providing high-definition and real-time image of whole body in few minutes or hours. Several MI studies have enabled the determination of molecular partners, in vivo tracking, and fate of compounds in different disorders. Considering that galectins are multifaceted proteins with great impact in many biological events, here we describe methods and strategies to generate labeled galectins for in vivo non-invasive imaging studies.


Assuntos
Galectinas , Imagem Molecular , Proteínas Luminescentes
7.
EJNMMI Radiopharm Chem ; 7(1): 13, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35697954

RESUMO

BACKGROUND: Tissue hypoxia is a pathological condition characterized by reducing oxygen supply. Hypoxia is a hallmark of tumor environment and is commonly observed in many solid tumors. Non-invasive imaging techniques like positron emission tomography (PET) are at the forefront of detecting and monitoring tissue hypoxia changes in vivo. RESULTS: We have developed a novel 18F-labeled radiotracer for hypoxia PET imaging based on cytotoxic agent benznidazole. Radiotracer N-(4-[18F]fluorobenzyl)-2-(2-nitro-1H-imidazol-1-yl)acetamide ([18F]FBNA) was synthesized through acylation chemistry with readily available 4-[18F]fluorobenzyl amine. Radiotracer [18F]FBNA was obtained in good radiochemical yields (47.4 ± 5.3%) and high radiochemical purity (> 95%). The total synthesis time was 100 min, including HPLC purification and the molar activity was greater than 40 GBq/µmol. Radiotracer [18F]FBNA was stable in saline and mouse serum for 6 h. [18F]FBNA partition coefficient (logP = 1.05) was found to be more lipophilic than [18F]EF-5 (logP = 0.75), [18F]FMISO (logP = 0.4) and [18F]FAZA (logP = - 0.4). In vitro studies showed that [18F]FBNA accumulates in gastric cancer cell lines AGS and MKN45 under hypoxic conditions. CONCLUSIONS: Hence, [18F]FBNA represents a novel and easy-to-prepare PET radioligand for imaging hypoxia.

8.
EJNMMI Radiopharm Chem ; 7(1): 26, 2022 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-36201072

RESUMO

BACKGROUND: 2-[18F]Fluoroethyltosylate ([18F]FEtOTs) is a well-known 18F-fluoroalkylating agent widely used to synthesize radiotracers for positron emission tomography. The widespread use of [18F]FEtOTs is due in part to its low volatility when compared to other halide and sulfonate building blocks. In this work, the radioactive volatile side-products formed during the synthesis of [18F]FEtOTs were identified and characterized for the first time, and an optimization of the reaction conditions to minimize their formation was proposed. RESULTS: In order to characterize the volatiles produced during [18F]FEtOTs synthesis, the reaction mixtures of both cold FEtOTs and [18F]FEtOTs were co-injected onto the HPLC system. The radioactive peaks corresponding to the volatile compounds were collected, analyzed through headspace gas chromatography mass spectrometry sampler (HS-GC-MS) and identified as vinyl fluoride ([19F]VF) and 2-fluoroethanol ([19F]FEOH). By using a rotatable central composite design with a two-level full factorial core of two factors (22), it was determined that temperature and time are independent variables which affect the generation of [18F]VF and [18F]FEOH during the radiosynthesis of [18F]FEtOTs. In addition, in order to reduce the formation of the volatiles ([18F]VF and [18F]FEOH) and increase the yield of [18F]FEtOTs, it was demonstrated that the molar ratio of base to precursor must also be considered. CONCLUSION: [18F]VF and [18F]FEOH are volatile side-products formed during the radiosynthesis of [18F]FEtOTs, whose yields depend on the reaction time, temperature, and the molar ratio of base to precursor. Therefore, special care should be taken during the radiosynthesis and subsequent reactions using [18F]FEOTs in order to avoid environmental contamination and to improve the yield of the desired products.

9.
Pharmaceutics ; 13(7)2021 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-34198999

RESUMO

The oncogene HER2 is an important molecular target in oncology because it is associated with aggressive disease and the worst prognosis. The development of non-invasive imaging techniques and target therapies using monoclonal antibodies is a rapidly developing field. Thus, this work proposes the study of the radioimmunotheranostic pair, [111In]In-DTPA-trastuzumab and [177Lu]Lu-DOTA-trastuzumab, evaluating the influence of the chelating agents and radionuclides on the biological properties of the radioimmunoconjugates (RICs). The trastuzumab was immunoconjugated with the chelators DTPA and DOTA and radiolabeled with [111In]InCl3 and [177Lu]LuCl3, respectively. The stability of the RICs was evaluated in serum, and the immunoreactive and internalization fractions were determined in SK-BR-3 breast cancer cells. The in vivo pharmacokinetics and dosimetry quantification and the ex vivo biodistribution were performed in normal and SK-BR-3 tumor-bearing mice. The data showed that there was no influence of the chelating agents and radionuclides on the immunoreactive and internalization fractions of RICs. In contrast, they influenced the stability of RICs in serum, as well as the pharmacokinetics, dosimetry and biodistribution profiles. Therefore, the results showed that the nature of the chelating agent and radionuclide could influence the biological properties of the radioimmunotheranostic pair.

10.
J Oncol ; 2019: 9827147, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31949431

RESUMO

Galectin-3 (Gal-3) is a multifunctional ß-galactoside-binding lectin that once synthesized is expressed in the nucleus, cytoplasm, cell surface, and extracellular environment. Gal-3 plays an important role in breast cancer tumors due to its ability to promote interactions between cell-cell and cell-extracellular matrix (ECM) elements, increasing tumor survival and metastatic dissemination. Still, the mechanism by which Gal-3 interferes with tumor cell migration and metastasis formation is complex and not fully understood. Here, we showed that Gal-3 knockdown increased the migration ability of 4T1 murine breast cancer cells in vitro. Using the 4T1 orthotopic breast cancer spontaneous metastasis mouse model, we demonstrated that 4T1-derived tumors were significantly larger in the presence of Gal-3 (scramble) in comparison with Gal-3 knockdown 4T1-derived tumors. Nevertheless, Gal-3 knockdown 4T1 cells were outnumbered in the bone marrow in comparison with scramble 4T1 cells. Finally, we reported here a decrease in the content of cell-surface syndecan-1 and an increase in the levels of chondroitin sulfate proteoglycans such as versican in Gal-3 knockdown 4T1 cells both in vitro and in vivo. Overall, our findings establish that Gal-3 downregulation during breast cancer progression regulates cell-associated and tumor microenvironment glycosaminoglycans (GAGs)/proteoglycans (PG), thus enhancing the metastatic potential of tumor cells.

11.
Curr Pharm Des ; 25(30): 3282-3288, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31419931

RESUMO

BACKGROUND: Adenocarcinoma of colon and rectum are one of the most common cancers worldwide, responsible for over 1,300,000 people diagnosed. Also, they are responsible for metastasis, which leads to death in less than 5 years. METHODS: In this study, we developed, characterized, and pre-clinically tested a new nano-radiopharmaceutical for early and differential detection of adenocarcinoma of colon and rectum. RESULTS AND CONCLUSION: Results demonstrated the specificity of the developed nanosystem and the ability to reach the tumor with very specific targeting. Also, the imaging data support the use of this nano-agent as a nanoimaging-guided-radiopharmaceutical.


Assuntos
Adenocarcinoma/diagnóstico por imagem , Neoplasias Colorretais/diagnóstico por imagem , Nanopartículas , Fluoruracila , Humanos , Compostos Radiofarmacêuticos , Tecnécio
12.
Artif Cells Nanomed Biotechnol ; 46(sup1): 1080-1087, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29482360

RESUMO

Cancer is responsible for more than 12% of all causes of death in the world, with an annual death rate of more than 7 million people. In this scenario melanoma is one of the most aggressive ones with serious limitation in early detection and therapy. In this direction we developed, characterized and tested in vivo a new drug delivery system based on magnetic core-mesoporous silica nanoparticle that has been doped with dacarbazine and labelled with technetium 99 m to be used as nano-imaging agent (nanoradiopharmaceutical) for early and differential diagnosis and melanoma by single photon emission computed tomography. The results demonstrated the ability of the magnetic core-mesoporous silica to be efficiently (>98%) doped with dacarbazine and also efficiently labelled with 99mTc (technetium 99 m) (>99%). The in vivo test, using inducted mice with melanoma, demonstrated the EPR effect of the magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable when injected intratumorally and the possibility to be used as systemic injection too. In both cases, magnetic core-mesoporous silica nanoparticles doped with dacarbazine and labelled with technetium 99 metastable showed to be a reliable and efficient nano-imaging agent for melanoma.


Assuntos
Dacarbazina/química , Imãs/química , Melanoma/diagnóstico por imagem , Nanopartículas/química , Dióxido de Silício/química , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único/métodos , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica , Diagnóstico Diferencial , Detecção Precoce de Câncer , Humanos , Marcação por Isótopo , Melanoma/patologia , Camundongos , Camundongos Endogâmicos BALB C , Metástase Neoplásica , Porosidade
13.
Artif Cells Nanomed Biotechnol ; 46(2): 341-345, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28355888

RESUMO

The diagnosis of lung cancer mostly occurs when the cancer is already in an advanced stage. In this situation, there are few options for the treatment and most of them have few chances of success. In this study, we developed and tested etoposide microparticles as a diagnostic agent for imaging lung cancer at early stages of development. We tested etoposide microparticles labeled with technetium 99m in inducted mice. The results demonstrated that over 10% of the total dose used was uptake by the tumor site. Also, the results showed that the microparticles had a good renal clearance and low uptake by liver and spleen. The data suggest that these micro-radiopharmaceuticals may be used for lung cancer imaging exam, especially single-photo emission computed tomography (SPECT).[Formula: see text].


Assuntos
Etoposídeo/química , Neoplasias Pulmonares/diagnóstico por imagem , Microesferas , Tecnécio/química , Tomografia Computadorizada de Emissão de Fóton Único , Células A549 , Animais , Etoposídeo/farmacocinética , Humanos , Marcação por Isótopo , Masculino , Camundongos
14.
Sci Rep ; 8(1): 3495, 2018 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-29472568

RESUMO

Galectin-3 (Gal-3) is a ß-galactoside binding protein that controls cell-cell and cell-extracellular matrix interactions. In lymphoid organs, gal-3 inhibits B cell differentiation by mechanisms poorly understood. The B cell development is dependent on tissue organization and stromal cell signaling, including IL-7 and Notch pathways. Here, we investigate possible mechanisms that gal-3 interferes during B lymphocyte differentiation in the bone marrow (BM) and spleen. The BM of gal-3-deficient mice (Lgals3-/- mice) was evidenced by elevated numbers of B220+CD19+c-Kit+IL-7R+ progenitor B cells. In parallel, CD45- bone marrow stromal cells expressed high levels of mRNA IL-7, Notch ligands (Jagged-1 and Delta-like 4), and transcription factors (Hes-1, Hey-1, Hey-2 and Hey-L). The spleen of Lgals3-/- mice was hallmarked by marginal zone disorganization, high number of IgM+IgD+ B cells and CD138+ plasma cells, overexpression of Notch ligands (Jagged-1, Delta-like 1 and Delta-like 4) by stromal cells and Hey-1. Morever, IgM+IgD+ B cells and B220+CD138+ CXCR4+ plasmablasts were significantly increased in the BM and blood of Lgals3-/- mice. For the first time, we demonstrated that gal-3 inhibits Notch signaling activation in lymphoid organs regulating earlier and terminal events of B cell differentiation.


Assuntos
Diferenciação Celular/genética , Galectina 3/genética , Células Secretoras de Insulina/metabolismo , Receptores Notch/genética , Animais , Células da Medula Óssea/citologia , Células da Medula Óssea/metabolismo , Regulação da Expressão Gênica/genética , Células Secretoras de Insulina/citologia , Interleucina-7/genética , Ligantes , Camundongos , Transdução de Sinais/genética , Baço/crescimento & desenvolvimento , Baço/metabolismo , Células Estromais/citologia , Células Estromais/metabolismo , Estruturas Linfoides Terciárias/genética , Fatores de Transcrição/genética
15.
Artif Cells Nanomed Biotechnol ; 46(sup3): S725-S733, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30449175

RESUMO

Breast cancer is women's most common type of cancer, with a global rate of over 522,000 deaths per year. One of the main problems related to breast cancer relies in the early detection, as the specialized treatment. In this direction was developed, characterized and tested in vivo a smart delivery system, based on radiolabelled magnetic core mesoporous silica doped with trastuzumab as intralesional nanodrug for breast cancer imaging and possible therapy. The results showed that nanoparticles had a size of 58.9 ± 8.1 nm, with specific surface area of 872 m2/g and pore volume of 0.85 cm3/g with a pore diameter of 3.15 nm. The magnetic core mesoporous silica was efficiently labelled with 99mTc (97.5% ±0.8) and doped >98%. The cytotoxicity assay, demonstrated they are safe to use. The data were corroborated with the IC50 result of: 829.6 µg ± 43.2. The biodistribution showed an uptake by the tumour of 7.5% (systemic via) and 97.37% (intralesional) with less than 3% of these nanoparticles absorbed by healthy tissues. In a period 6-h post-injection, no barrier delimited by the tumour was crossed, corroborating the use as intralesional nanodrug.


Assuntos
Portadores de Fármacos , Nanopartículas , Dióxido de Silício , Trastuzumab , Neoplasias de Mama Triplo Negativas , Animais , Linhagem Celular Tumoral , Portadores de Fármacos/química , Portadores de Fármacos/farmacocinética , Portadores de Fármacos/farmacologia , Feminino , Humanos , Células MCF-7 , Camundongos , Camundongos Endogâmicos BALB C , Nanopartículas/química , Nanopartículas/uso terapêutico , Tamanho da Partícula , Dióxido de Silício/química , Dióxido de Silício/farmacocinética , Distribuição Tecidual , Trastuzumab/química , Trastuzumab/farmacocinética , Trastuzumab/farmacologia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/metabolismo , Neoplasias de Mama Triplo Negativas/patologia , Ensaios Antitumorais Modelo de Xenoenxerto
16.
Oncotarget ; 8(30): 49484-49501, 2017 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-28533486

RESUMO

Angiogenesis is a coordinated process tightly regulated by the balance between Delta-like-4 (DLL4) and Jagged-1 (JAG1) in endothelial cells. Here we show that galectin-3 (gal-3), a glycan-binding protein secreted by cancer cells under hypoxic conditions, triggers sprouting angiogenesis, assisted by hypoxic changes in the glycosylation status of endothelial cells that enhance binding to gal-3. Galectin-3's proangiogenic functions were found to be predominantly dependent on the Notch ligand JAG1. Differential direct binding to JAG1 was shown by surface plasmon resonance assay. Upon binding to Notch ligands, gal-3 preferentially increased JAG1 protein half-life over DLL4 and preferentially activated JAG1/Notch-1 signaling in endothelial cells. JAG1 overexpression in Lewis lung carcinoma cells accelerated tumor growth in vivo, but this effect was prevented in Lgals3-/- mice. Our findings establish gal-3 as a molecular regulator of the JAG1/Notch-1 signaling pathway and have direct implications for the development of strategies aimed at controlling tumor angiogenesis.


Assuntos
Galectina 3/metabolismo , Proteína Jagged-1/metabolismo , Neoplasias/metabolismo , Neoplasias/patologia , Neovascularização Patológica/metabolismo , Receptores Notch/metabolismo , Animais , Proteínas Sanguíneas , Modelos Animais de Doenças , Células Endoteliais/metabolismo , Galectina 3/genética , Galectinas , Humanos , Hipóxia/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Modelos Biológicos , Neoplasias/genética , Neovascularização Patológica/genética , Ligação Proteica , Transdução de Sinais
17.
Cancer Med ; 3(2): 201-14, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24421272

RESUMO

In order to study the role of galectin-3 in tumor angiogenesis associated with tumor-associated macrophages (TAM) and tumor parenchyma, the galectin-3 expression was reconstituted in Tm1 melanoma cell line that lacks this protein. Galectin-3-expressing cells (Tm1G3) and mock-vector transfected cells (Tm1N3) were injected into wild-type (WT) and galectin-3 knockout (KO) C57Bl/6 mice. Tumors originated from Tm1G3 were larger in tumor volume with enlarged functional vessels, decreased necrotic areas, and increased vascular endothelial growth factor (VEGF) protein levels. Galectin-3-nonexpressing-cells injected into WT and KO showed increased levels of transforming growth factor beta 1 (TGFß1) and, in WT animals this feature was also accompanied by increased VEGFR2 expression and its phosphorylation. In KO animals, tumors derived from galectin-3-expressing cells were infiltrated by CD68(+)-cells, whereas in tumors derived from galectin-3-nonexpressing-cells, CD68(+) cells failed to infiltrate tumors and accumulated in the periphery of the tumor mass. In vitro studies showed that Tm1G3 secreted more VEGF than Tm1N3 cells. In the latter case, TGFß1 induced VEGF production. Basal secretion of VEGF was higher in WT-bone marrow-derived macrophages (BMDM) than in KO-BMDM. TGFß1 induced secretion of VEGF only in WT-BMDM. Tm1G3-induced tumors had the Arginase I mRNA increased, which upregulated alternative macrophage (M2)/TAM induction. M2 stimuli, such as interleukin-4 (IL4) and TGFß1, increased Arginase I protein levels and galectin-3 expression in WT- BMDM, but not in cells from KO mice. Hence, we report that galectin-3 disruption in tumor stroma and parenchyma decreases angiogenesis through interfering with the responses of macrophages to the interdependent VEGF and TGFß1 signaling pathways.


Assuntos
Galectina 3/metabolismo , Macrófagos/metabolismo , Melanoma/irrigação sanguínea , Fator de Crescimento Transformador beta1/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo , Animais , Metilação de DNA , Galectina 3/genética , Humanos , Masculino , Melanoma/genética , Melanoma/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Neovascularização Patológica/genética , Neovascularização Patológica/metabolismo , Regiões Promotoras Genéticas , Microambiente Tumoral , Fator A de Crescimento do Endotélio Vascular/biossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA