Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Anal Chem ; 96(44): 17746-17753, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39450980

RESUMO

The use of synthetic cathinones (SCs) has increased in recent years, posing significant public health problems due to their adverse effects and potential for fatal poisonings. The structural diversity and rapid emergence of new SC analogues create challenges for law enforcement and drug screening techniques. This work presents for the first time the electrochemical detection of SCs using differential pulse voltammetry (DPV) on a boron-doped diamond electrode (BDDE). We analyzed 15 SCs, including well-known compounds such as mephedrone, methylone, and ephylone, revealing distinct electrochemical profiles with two characteristic reduction peaks (R1 and R2). The method was optimized in Britton-Robinson buffer (0.1 mol L-1, pH 8.0) and demonstrated a high selectivity and sensitivity. Multivariate statistical methods, including principal component analysis and hierarchical cluster analysis, classified SCs into six distinct groups. The DPV optimization and analytical parameter determination, including the limit of detection (LOD), were performed for the least electroactive SC, 4'-methyl-α-pyrrolidinohexanophenone, yielding an LOD of 3.8 µmol L-1, suitable for screening street samples. Interference studies with common illicit drugs and adulterants confirmed the selectivity of the DPV-BDDE method. Preliminary identification of SCs in 46 real seized samples was successfully performed using this method with results validated by liquid chromatography-mass spectrometry (LC-MS). The method also identified three SCs not included in the original set: bupropion, benzylone, and dipentylone. The DPV-BDDE method offers a rapid, robust, and portable approach for the selective screening of SCs in forensic applications, demonstrating significant advantages over traditional colorimetric tests.

2.
Analyst ; 148(7): 1552-1561, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-36880972

RESUMO

Mephedrone (MEP) is an illicit stimulant drug that belongs to the synthetic cathinone (SC) class, which has been widely used for recreational purposes and reported in forensic analysis. The preliminary identification of MEP and other SCs in seized samples is of great interest for forensic investigation and a fast and simple screening test for these drugs would be useful for on-site and in-house analyses. In this study, we present the electrochemical detection of MEP in forensic samples using, for the first time, independent redox processes of SCs on a graphene screen-printed electrode (SPE-GP). The proposed method for MEP detection on the SPE-GP was optimized in Britton-Robinson buffer solution (0.1 mol L-1) at pH 10.0 with adsorptive stripping differential pulse voltammetry (AdSDPV). The use of the SPE-GP with AdSDPV provides a wide linear range for MEP determination (2.6 to 112 µmol L-1) with a low limit of detection (LOD) (0.3 µmol L-1). The real surface area available for adsorption on the SPE-GP was estimated to be between 3.80 and 5.70 cm2, which provided high sensitivity for the proposed method. Furthermore, good stability of MEP electrochemical responses on the SPE-GP was obtained using the same or different electrodes (N = 3), with relative standard deviation (RSD) < 5.0% for both redox processes. Interference studies for a common adulterant (caffeine) and twelve other illicit drugs (phenethylamines, amphetamines, and other SCs) were performed with a highly selective response for MEP detection. Therefore, the SPE-GP with AdSDPV is demonstrated to be a selective and sensitive screening method to detect MEP and other SCs in forensic analysis, providing a fast and simple preliminary identification of these drugs in seized samples.


Assuntos
Grafite , Metanfetamina , Catinona Sintética , Eletrodos , Técnicas Eletroquímicas/métodos
3.
J Sep Sci ; 38(10): 1657-62, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25773878

RESUMO

Paracetamol, caffeine and ibuprofen are found in over-the-counter pharmaceutical formulations. In this work, we propose two new methods for simultaneous determination of paracetamol, caffeine and ibuprofen in pharmaceutical formulations. One method is based on high-performance liquid chromatography with diode-array detection and the other on capillary electrophoresis with capacitively coupled contactless conductivity detection. The separation by high-performance liquid chromatography with diode-array detection was achieved on a C18 column (250×4.6 mm(2), 5 µm) with a gradient mobile phase comprising 20-100% acetonitrile in 40 mmol L(-1) phosphate buffer pH 7.0. The separation by capillary electrophoresis with capacitively coupled contactless conductivity detection was achieved on a fused-silica capillary (40 cm length, 50 µm i.d.) using 10 mmol L(-1) 3,4-dimethoxycinnamate and 10 mmol L(-1) ß-alanine with pH adjustment to 10.4 with lithium hydroxide as background electrolyte. The determination of all three pharmaceuticals was carried out in 9.6 min by liquid chromatography and in 2.2 min by capillary electrophoresis. Detection limits for caffeine, paracetamol and ibuprofen were 4.4, 0.7, and 3.4 µmol L(-1) by liquid chromatography and 39, 32, and 49 µmol L(-1) by capillary electrophoresis, respectively. Recovery values for spiked samples were between 92-107% for both proposed methods.


Assuntos
Acetaminofen/análise , Cafeína/análise , Cromatografia Líquida de Alta Pressão/métodos , Eletroforese Capilar/métodos , Ibuprofeno/análise , Preparações Farmacêuticas/análise , Espectrofotometria Ultravioleta/métodos
4.
Talanta ; 269: 125476, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38042144

RESUMO

The advent of new psychoactive substances (NPS) has caused enormous difficulty for legal control since they are rapidly commercialized, and their chemical structures are routinely altered. In this aspect, derivatives phenethylamines, such as 25E-NBOH, have received great attention in the forensic scenario. Hence, we propose portable and cost-effective (U$ 5.00) 3D-printed devices for the electrochemical screening of 25E-NBOH for the first time. The cell and all electrodes were printed using acrylonitrile butadiene styrene filament (insulating material) and conductive filament (graphite embedded in a polylactic acid matrix), respectively, both by the fused deposition modeling (FDM) 3D printing technique. The electrochemical apparatus enables micro-volume analysis (50-2000 µL), especially important for low sample volumes. A mechanistic route for the electrochemical oxidation of 25E-NBOH is proposed based on cyclic voltammetric data, which showed two oxidation processes around +0.75 V and +1.00 V and a redox pair between +0.2 and -0.2 V (vs. graphite ink pseudo-reference). A fast and sensitive square-wave voltammetry method was developed, which exhibited a linear working range from 0.85 to 5.1 µmoL-1, detection limit of 0.2 µmol L-1, and good intra-electrode precision (n = 10, RSD <5.3 %). Inter-electrode measurements (n = 3, RSD <9.8 %) also attested that the electrode production process is reproducible. Interference tests in the presence of other drugs frequently found in blotting paper indicated high selectivity of the electrochemical method for screening of 25E-NBOH. Screening analysis of blotting paper confirmed the presence of 25E-NBOH in the seized samples. Moreover, a recovery percentage close to 100 % was found for a spiked saliva sample, suggesting the method's usefulness for quantitative purposes aimed at information on recent drug use.


Assuntos
Grafite , Grafite/química , Oxirredução , Técnicas Eletroquímicas/métodos , Eletrodos , Impressão Tridimensional
5.
Talanta ; 265: 124832, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37354624

RESUMO

Fused deposition modeling (FDM) 3D printing is a promising additive manufacturing technique to produce low-cost disposable electrochemical devices. However, the print of devices like well-known screen-printed electrodes (all electrodes on the same device) is difficult using the available technology (few materials available for production of working electrodes). In this paper we present a procedure to produce disposable and robust electrochemical devices by FDM 3D printing that allows reproducible analysis of small volumes (50-2000 µL). The device consists of just two printed parts that allow easy coupling of different conductive materials for using as disposable or non-disposable working electrodes with reproducible geometric area. Printed counter and pseudo-reference electrodes can also be easily fitted into the microcell. Moreover, conventional counter (platinum wire) and mini reference electrodes can also be used. As a proof of concept, paracetamol, cocaine and uric acid were used as model analytes using different materials as working electrodes. Linear calibration curves (r > 0.99) with similar slopes (0.29 ± 0.01 µA µmol L-1; RSD = 3.4%) were obtained by square wave voltammetry (SWV) using a complete printed system and different volumes of standard solutions of paracetamol (50, 100, and 200 µL). For uric acid, a linear range of 10-125 µmol L-1 (r > 0.99), was obtained using differential pulse voltammetry as the electrochemical technique and a disposable laser-induced graphene base as the working electrode. With the coupling of boron-doped diamond working electrode, screening tests were successfully performed in seized cocaine samples with selective detection of cocaine in the presence of its most common adulterants. The production cost per unit of a complete electrochemical system is around US 5.00. In large-scale production, only the working electrode needs to be replaced while the microcell and counter/pseudo reference electrodes do not need to be discarded.

6.
Talanta ; 233: 122597, 2021 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-34215085

RESUMO

1-(3-chlorophenyl) piperazine (mCPP) is a synthetic drug with hallucinogenic effects that has often been found in seized samples. In this context, easy to use point-of-care tests can be of great value in preliminary forensic analysis. Herein, we proposed a simple, fast, and portable electrochemical method for the detection of mCPP in seized samples. The method is based on the use of disposable screen-printed carbon electrodes (SPCE) and rapid screening procedures by square-wave voltammetry using minimal sample sizes (100 µL). mCPP showed an irreversible electrochemical oxidation process at +0.65 V on SPCE (vs Ag) using 0.04 mol L-1 Britton Robinson (BR) buffer solution (pH 7) as the supporting electrolyte. The proposed method exhibited a linear correlation (r = 0.998) between peak current and mCPP concentration in the range of 1-30 µmol L-1 (LOD = 0.1 µmol L-1). Interference studies were performed for adulterants and other classes of drugs of abuse, which can also be found in seized samples containing mCPP, such as caffeine, amphetamine, methamphetamine, 1-benzylpiperazine, 3,4-methylenedioxymethamphetamine, methylone, mephedrone, ethylone and 3, 4-methylenedioxypyrovalerone. The developed method presents great potential as a rapid and simple screening tool to detect mCPP in forensic samples.


Assuntos
N-Metil-3,4-Metilenodioxianfetamina , Anfetaminas , Eletrodos , Piperazinas
7.
Sci Rep ; 11(1): 1919, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479324

RESUMO

SiO2-SO3H, with a surface area of 115 m2/g, pore volumes of 0.38 cm3g-1 and 1.32 mmol H+/g, was used as a 10% w/w catalyst for the preparation of 5-hydroxymethyl-2-furfural (HMF) from fructose. A conversion of 100% was achieved in a microwave reactor during 10 min at 150 °C in DMSO, with 100% selectivity for HMF, at a molar ratio of fructose: DMSO equal to 1:56. The catalyst could be re-used three times.

8.
Nanomaterials (Basel) ; 11(2)2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33535439

RESUMO

3,4-methylenedioxypyrovalerone (MDPV) is a harmful and controlled synthetic cathinone used as a psychostimulant drug and as sport-enhancing substance. A sensor was developed for the direct analysis of MDPV by transducing its oxidation signal by means of an electropolymerized molecularly imprinted polymer (e-MIP) built in-situ on the screen-printed carbon electrode's (SPCE) surface previously covered with multi-walled carbon nanotubes (MWCNTs) and silver nanoparticles (AgNPs). Benzene-1,2-diamine was used as the functional monomer while the analyte was used as the template monomer. Each step of the sensor's development was studied by cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) in a solution containing ferricyanide, however no redox probe was required for the actual MDPV measurements. The interaction between the poly(o-phenylenediamine) imprinted polymer and MDPV was studied by density-functional theory (DFT) methods. The SPCE-MWCNT-AgNP-MIP sensor responded adequately to the variation of MDPV concentration. It was shown that AgNPs enhanced the electrochemical signal by around a 3-fold factor. Making use of square-wave voltammetry (SWV) the developed sensor provided a limit of detection (LOD) of 1.8 µmol L-1. The analytical performance of the proposed sensor paves the way to the development of a portable device for MDPV on-site sensing to be applied in forensic and doping analysis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA