Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
J Org Chem ; 87(14): 9148-9156, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35763664

RESUMO

Excited state intramolecular proton transfer (ESIPT) has been documented from an amino NH2 group to a carbon atom of an adjacent aromatic ring. This finding changes the paradigm, as hitherto such processes have not been considered as plausible due to slow protonation of carbon and low (photo)acidity of the NH2 group. The ESIPT was studied by irradiation of 2-(2-aminophenyl)naphthalene in CH3CN-D2O, whereupon regiospecific incorporation of deuterium takes place at the naphthalene position 1, with a quantum yield of Φ = 0.11. A synergy of experimental and computational investigations completely unraveled the mechanism of this important photochemical reaction. Upon excitation to the photoreactive S2(La) state, a favorable redistribution of charge sets the stage for ESIPT to the carbon atom in naphthalene position 1. H2O molecules are needed, as they increase the excitation energy and oscillator strength for the population of the S2(La) state. The gain in energy is used to surmount a small energy barrier on the pathway from the Franck-Condon geometry to the conical intersection with the S0, delivering aza-quinone methide.

2.
Phys Chem Chem Phys ; 24(24): 14836-14845, 2022 Jun 22.
Artigo em Inglês | MEDLINE | ID: mdl-35697028

RESUMO

UV irradiation of RNA leads to the formation of intra- and inter-strand crosslinks of cyclobutane type. Despite the importance of this reaction, relatively little is known about how the mutual orientation of the two bases affects the outcome of the reaction. Here we report a comparative nonadiabatic molecular dynamics study of face-to-back (F2B) and face-to-face (F2F) stacked uracil-water clusters. The computations were performed using the second-order algebraic-diagrammatic-construction (ADC(2)) method. We found that F2B stacked uracil-water clusters either relax non-reactively to the ground state by an ethylenic twist around the CC bond or remain in the lowest nπ* state in which the two bases gradually move away from each other. This finding is consistent with the low propensity for the formation of intra-strand cyclobutane dimers between adjacent RNA bases. On the contrary, in F2F stacked uracil-water clusters, in addition to non-reactive deactivation, we found a pro-reactive deactivation pathway, which may lead to the formation of cyclobutane uracil dimers in the electronic ground state. On a qualitative level, the observed photodynamics of F2F stacked uracil-water clusters explains the greater propensity of RNA to form inter-strand cyclobutane-type crosslinks.


Assuntos
Ciclobutanos , Dímeros de Pirimidina , Dímeros de Pirimidina/química , RNA , Raios Ultravioleta , Uracila/química , Água
3.
J Phys Chem A ; 126(7): 1094-1102, 2022 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-35168330

RESUMO

Recently, so-called "nontraditional intrinsic luminescence" has been reported in several macromolecular systems. Although DABCO (1,4-diazabicyclo[2.2.2]octane) is the first system in which the effect was observed, a thorough analysis of the optical properties of the molecule, which would reveal the origin of this mysterious effect, is still pending. We perform an advanced post-Hartree-Fock treatment of the low-lying electronic states of this molecule, which need to be described with care because of their pronounced Rydberg character. We take a deeper look into the low-lying electronic transitions of DABCO targeting the explanation of the complex vibronic structures of its absorption and fluorescence spectra. Two electronic states, the 1E'(n+3pxy) and 1A2″(n+3pz) states, contribute to the absorption spectrum in the 39000-46000 cm-1 spectral range. We also reveal the spectroscopic signature of the 1A2″(n+3pz) state. The analyses of the contributions of individual vibrational normal modes allowed the identification of those giving rise to the complex vibronic structures of the spectra. Fluorescence emission arises from the vibronic coupling of the one-photon forbidden transition between the 1A1'(n+3s) state and the electronic ground state. The spectrum, which can be interpreted in terms of populating a few vibrational normal modes, is shifted toward visible wavelengths mostly due to the forced interaction of the lone pair electrons of the two nitrogen atoms. Our work on DABCO may help to rationalize the luminescence of more complex systems containing tertiary amine groups.

4.
Phys Chem Chem Phys ; 23(4): 2594-2604, 2021 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-33475644

RESUMO

Despite many studies, the mechanisms of nonradiative relaxation of uracil in the gas phase and in aqueous solution are still not fully resolved. Here we combine theoretical UV absorption spectroscopy with nonadiabatic dynamics simulations to identify the photophysical mechanisms that can give rise to experimentally observed decay time constants. We first compute and theoretically assign the electronic spectra of uracil using the second-order algebraic-diagrammatic-construction (ADC(2)) method. The obtained electronic states, their energy differences and state-specific solvation effects are the prerequisites for understanding the photodynamics. We then use nonadiabatic trajectory-surface-hopping dynamics simulations to investigate the photoinduced dynamics of uracil and uracil-water clusters. In contrast to previous studies, we found that a single mechanism - the ethylenic twist around the C[double bond, length as m-dash]C bond - is responsible for the ultrafast component of the nonradiative decay, both in the gas phase and in solution. Very good agreement with the experimentally determined ultrashort decay time constants is obtained.


Assuntos
Uracila/química , Água/química , Ligação de Hidrogênio , Simulação de Dinâmica Molecular , Espectrofotometria Ultravioleta , Uracila/efeitos da radiação
5.
J Am Chem Soc ; 142(42): 18042-18049, 2020 10 21.
Artigo em Inglês | MEDLINE | ID: mdl-32966740

RESUMO

Amyloids have unique structural, chemical, and optical properties. Although much theoretical effort has been directed toward understanding amyloid nucleation, the understanding of their optical properties has remained rather limited. In particular, the photophysical mechanisms leading to near-UV excitation and characteristic blue-green luminescence in amyloid systems devoid of aromatic amino acids have not been resolved. We use ab initio static calculations and nonadiabatic dynamics simulations to study the excited electronic states of model amyloid-like peptides. We show that their photophysics is essentially governed by the multitude of nπ* states with excitation localized on the amide groups. The strong stabilization of the nπ* states with respect to the amide group deplanarization and the concomitant increase of the oscillator strength make excitation in the near-UV possible. With respect to emission, our dynamics simulations revealed that the amyloid cross ß arrangement effectively hinders the nonradiative relaxation channels usually operative in proteins. Finally, we show that after relaxation of the photoexcited peptides toward the minimum of the different nπ* states, fluorescence takes place in the visible (green) part of the electromagnetic spectrum.


Assuntos
Amiloide/química , Simulação de Dinâmica Molecular , Raios Ultravioleta , Conformação Proteica
6.
J Am Chem Soc ; 142(21): 9718-9724, 2020 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-32349476

RESUMO

Although diazoalkanes are important carbene precursors in organic synthesis, a comprehensive mechanism of photochemical formation of carbenes from diazoalkanes has not been proposed. Synergies of experiments and computations demonstrate the involvement of higher excited singlet states in the photochemistry of diazoalkanes. In all investigated diazoalkanes, excitation to S1 results in nonreactive internal conversion to S0. On the contrary, excitation to higher-lying singlet states (Sn, n > 1) drives the reaction toward a different segment of the S1/S0 conical intersection seam and results in nitrogen elimination and formation of carbenes.

7.
Phys Chem Chem Phys ; 21(41): 22782-22793, 2019 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-31595896

RESUMO

The theoretical assignment of electronic spectra of polyatomic molecules is a challenging problem that requires the specification of the character of a large number of electronic states. We propose a procedure for automatically determining the character of electronic transitions and apply it to the study of UV spectra of DNA bases in the gas phase and in the aqueous environment. The procedure is based on the computation of electronic wave function overlaps and accounts for an extensive sampling of nuclear geometries. Novelties of this work are the theoretical assignment of the electronic spectra of DNA bases up to 190 nm and a state specific analysis of solvation effects. By accounting for different effects contributing to the total solvent shift we obtained a good agreement between the computed and experimental spectra. Effects of vibrational averaging, temperature and solvent-induced structural changes shift excitation energies to lower values. Solvent-solute electrostatic interactions are state specific and strongly destabilize nRyd states, and to lesser extent nπ* and πRyd states. Altogether, this results in the stabilization of ππ* states and destabilization of nπ*, πRyd and nRyd states in solution.


Assuntos
Técnicas de Química Analítica/métodos , DNA/química , Solventes/química , Análise Espectral , Gases/química , Eletricidade Estática , Raios Ultravioleta
8.
J Chem Phys ; 150(15): 154119, 2019 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-31005116

RESUMO

Trajectory surface hopping (TSH) methods have been widely used to study photoinduced nonadiabatic processes. In the present study, nonadiabatic dynamics simulations with the widely used Tully's fewest switches surface hopping (FSSH) algorithm and a Landau-Zener-type TSH (LZSH) algorithm have been performed for the internal conversion dynamics of pyrazine. The accuracy of the two TSH algorithms has been critically evaluated by a direct comparison with exact quantum dynamics calculations for a model of pyrazine. The model comprises the three lowest excited electronic states (B3u(nπ*), A1u(nπ*), and B2u(ππ*)) and the nine most relevant vibrational degrees of freedom. Considering photoexcitation to the diabatic B2u(ππ*) state, we examined the time-dependent diabatic and adiabatic electronic population dynamics. It is found that the diabatic populations obtained with both TSH methods are in good agreement with the exact quantum results. Fast population oscillations between the B3u(nπ*) and A1u(nπ*) states, which reflect nonadiabatic electronic transitions driven by coherent dynamics in the normal mode Q8a, are qualitatively reproduced by both TSH methods. In addition to the model study, the TSH methods have been interfaced with the second-order algebraic diagrammatic construction ab initio electronic-structure method to perform full-dimensional on-the-fly nonadiabatic dynamics simulations for pyrazine. It is found that the electronic population dynamics obtained with the LZSH method is in excellent agreement with that obtained by the FSSH method using a local diabatization algorithm. Moreover, the electronic populations of the full-dimensional on-the-fly calculations are in excellent agreement with the populations of the three-state nine-mode model, which confirms that the internal conversion dynamics of pyrazine is accurately represented by this reduced-dimensional model on the time scale under consideration (200 fs). The original FSSH method, in which the electronic wave function is propagated in the adiabatic representation, yields less accurate results. The oscillations in the populations of the diabatic B3u(nπ*) and A1u(nπ*) states driven by the mode Q8a are also observed in the full-dimensional dynamics simulations.

9.
Chemistry ; 23(34): 8244-8251, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28370457

RESUMO

The computational analysis of the isomer- and conformer-dependent photochemistry of 1- and 2-naphthols and their microsolvated water clusters is motivated by their very different excited state reactivities. We present evidence that 1- and 2-naphthol follow distinct excited state deactivation pathways. The deactivation of 2-naphthols, 2-naphthol water clusters, as well as of the anti conformer of 1-naphthol is mediated by the optically dark 1 πσ* state. The dynamics of the 1 πσ* surface leads to the homolytic cleavage of the OH bond. On the contrary, the excited state deactivation of syn 1-naphthol and 1-naphthol water clusters follows an uncommon reaction pathway. Upon excitation to the bright 1 ππ*(La ) state, a highly specific excited state hydrogen transfer (ESHT) to carbon atoms C8 and C5 takes place, yielding 1,8- and 1,5-naphthoquinone methides. The ESHT pathway arises from the intrinsic electronic properties of the 1 ππ*(La ) state of 1-naphthols.

10.
Molecules ; 22(3)2017 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-28335582

RESUMO

The present work is directed toward understanding the mechanisms of excited state deactivation in three neutral model peptides containing the phenylalanine residue. The excited state dynamics of theγL(g+)folded form of N-acetylphenylalaninylamide (NAPA B) and its amide-N-methylated derivative (NAPMA B) is reviewed and compared to the dynamics of the monohydrated structure of NAPA (NAPAH). The goal is to unravel how the environment, and in particular solvation, impacts the photodynamics of peptides. The systems are investigated using reaction path calculations and surface hopping nonadiabatic dynamics based on the coupled cluster doubles (CC2) method and time-dependent density functional theory. The work emphasizes the role that excitation transfer from the phenylππ*to amidenπ*state plays in the deactivation of the three systems and shows how the ease of out-of-plane distortions of the amide group determines the rate of population transfer between the two electronic states. The subsequent dynamics on thenπ*state is barrierless along several pathways and leads to fast deactivation to the ground electronic state.


Assuntos
Biologia Computacional/métodos , Peptídeos/química , Fenilalanina/química , Modelos Moleculares , Processos Fotoquímicos , Estrutura Secundária de Proteína , Teoria Quântica
11.
Phys Chem Chem Phys ; 18(17): 11606-9, 2016 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-26395765

RESUMO

Tetraphenylethylene is a prototypical example of a molecule displaying aggregation-induced emission. Despite many studies on the optical properties of TPE and its derivatives, the origin of the non-emissive behavior in the gas phase or in dilute solutions has yet to be unravelled. Here, we identify the ultrafast deactivation mechanisms responsible for the fluorescence quenching in isolated TPE.

12.
J Chem Phys ; 144(8): 084307, 2016 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-26931702

RESUMO

Here we present a comparative computational study of the photoionization of furan from the ground and the two lowest-lying excited electronic states. The study aims to assess the quality of the computational methods currently employed for treating bound and continuum states in photoionization. For the ionization from the ground electronic state, we show that the Dyson orbital approach combined with an accurate solution of the continuum one particle wave functions in a multicenter B-spline basis, at the density functional theory (DFT) level, provides cross sections and asymmetry parameters in excellent agreement with experimental data. On the contrary, when the Dyson orbitals approach is combined with the Coulomb and orthogonalized Coulomb treatments of the continuum, the results are qualitatively different. In excited electronic states, three electronic structure methods, TDDFT, ADC(2), and CASSCF, have been used for the computation of the Dyson orbitals, while the continuum was treated at the B-spline/DFT level. We show that photoionization observables are sensitive probes of the nature of the excited states as well as of the quality of excited state wave functions. This paves the way for applications in more complex situations such as time resolved photoionization spectroscopy.

13.
Phys Chem Chem Phys ; 17(29): 19012-20, 2015 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-26129838

RESUMO

The excitation wavelength dependent photodynamics of pyrrole are investigated by nonadiabatic trajectory-surface-hopping dynamics simulations based on time dependent density functional theory (TDDFT) and the algebraic diagrammatic construction method to the second order (ADC(2)). The ADC(2) results confirm that the N-H bond dissociation occurring upon excitation at the origin of the first excited state, S1(πσ*), is driven by tunnelling [Roberts et al., Faraday Discuss., 2013, 163, 95] as a barrier of ΔE = 1780 cm(-1) traps the population in a quasi-bound minimum. Upon excitation to S1(πσ*) in the wavelength range of 236-240 nm, direct dissociation of the N-H bond takes place with a time constant of 28 fs. The computed time constant is in very good agreement with recently reported measurements. Excitation to the lowest B2 state in the 198-202 nm range returns a time constant for N-H fission of 48 fs at the B3LYP/def2-TZVPD level, in perfect agreement with the experiment [Roberts et al. Faraday Discuss., 2013, 163, 95]. For the same wavelength range the ADC(2)/aug-cc-pVDZ decay constant is more than three times longer than the experimentally reported one. The accuracy of the B3LYP/def2-TZVPD dynamics is checked against reference complete-active-space second-order perturbation theory (CASPT2) calculations and explained in terms of correct topography of the ππ* surface and the lack of mixing between the ππ* and the 3px Rydberg states which occurs in the ADC(2) method.

14.
J Phys Chem A ; 119(43): 10637-44, 2015 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-26439365

RESUMO

Binding of a single water molecule has a dramatic effect on the excited state lifetime of adenine. Here we report a joint nonadiabatic dynamics and reaction paths study aimed at understanding the sub-100 fs lifetime of adenine in the monohydrates. Our nonadiabatic dynamics simulations, performed using the ADC(2) electronic structure method, show a shortening of the excited state lifetime in the monohydrates with respect to bare adenine. However, the computed lifetimes were found to be significantly longer that the observed one. By comparing the reaction pathways of several excited state deactivation processes in adenine and adenine monohydrates, we show that electron-driven proton transfer from water to nitrogen atom N3 of the adenine ring may be the process responsible for the observed ultrafast decay. The inaccessibility of the electron-driven proton transfer pathway to trajectory-based nonadiabatic dynamics simulation is discussed.


Assuntos
Adenina/química , Teoria Quântica , Adenina/análogos & derivados , Simulação de Dinâmica Molecular , Água/química
15.
Phys Chem Chem Phys ; 16(6): 2285-8, 2014 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-24382606

RESUMO

A conformation-selective photophysics study in phenylalanine model peptides, combining pump-probe gas phase experiments and excited state calculations, highlights for the first time the quenching properties of a primary amide group (through its nπ* excited state) along with the effect of vibrational energy that facilitates access to the conical intersection area.


Assuntos
Peptídeos/química , Fenilalanina/química , Amidas/química , Modelos Moleculares , Raios Ultravioleta
16.
Chem Sci ; 15(14): 5225-5237, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38577382

RESUMO

A combined computational and experimental study reveals that ortho-, meta- and para-aminobiphenyl isomers undergo distinctly different photochemical reactions involving proton transfer. Deuterium exchange experiments show that the ortho-isomer undergoes a facile photoprotonation at a carbon atom via excited-state intramolecular proton transfer (ESIPT). The meta-isomer undergoes water-assisted excited-state proton transfer (ESPT) and a photoredox reaction via proton-coupled electron transfer (PCET). The para-isomer undergoes a water-assisted ESPT reaction. All three reactions take place in the singlet excited-state, except for the photoredox process of the meta-isomer, which involves a triplet excited-state. Computations illustrate the important role of excited-state antiaromaticity relief in these photoreactions.

17.
Chem Sci ; 15(12): 4427-4433, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516088

RESUMO

The symmetric bissilyl-dione 3 reveals two well-separated n → π* absorption bands at λmax = 637 nm (ε = 140 mol-1 dm3 cm-1) and 317 nm (ε = 2460 mol-1 dm3 cm-1). Whereas excitation of 3 at λ = 360/365 nm affords an isolable siloxyketene 4 in excellent yields, irradiation at λ = 590/630 nm leads to the stereo-selective and quantitative formation of the siloxyrane 5. These remarkable wavelength-dependent rearrangements are based on the electronic and steric properties provided by the hypersilyl groups. While the siloxyketene 4 is formed via a hitherto unknown 1,3-hypersilyl migration via the population of a second excited singlet state (S2, λmax = 317 nm, a rare case of anti-Kasha reactivity), the siloxyrane 5 emerges from the first excited triplet state (T1via S1λmax = 637 nm). These distinct reaction pathways can be traced back to specific energy differences between the S2, S1 and T1, an electronic consequence of the bissilyl substited α-dione (the "pearl"). The hypersilyl groups act as protective ''oyster shell", which are responsible for the clean formation of 4 and 5 basically omitting side products. We describe novel synthetic pathways to achieve hypersilyl substitution (3) and report an in-depth investigation of the photorearrangements of 3 using UV/vis, in situ IR, NMR spectroscopy and theoretical calculations.

18.
J Org Chem ; 78(5): 1811-23, 2013 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22954380

RESUMO

ESIPT and solvent-assisted ESPT in isomeric phenyl naphthols and naphthyl phenols 5-8 were investigated by preparative photolyses in CH3CN-D2O, fluorescence spectroscopy, LFP, and ab initio calculations. ESIPT takes place only in 5 (D-exchange Φ = 0.3), whereas 6-8 undergo solvent-assisted PT with much lower efficiencies. The efficiency of the ESIPT and solvent-assisted PT is mainly determined by different populations of the reactive conformers in the ground state and the NEER principle. The D-exchange experiments and calculations using RI-CC2/cc-pVDZ show that 5 in S1 deactivates by direct ESIPT from the OH to the naphthalene position 1 through a conical intersection with S0, delivering QM 14 that was detected by LFP (τ = 26 ± 3 ns). ESIPT to position 3 in 5 is possible but it proceeds from a less-populated conformer and involves an energy barrier on S1. In solvent-assisted PT to naphthalene position 4 in 5, zwitterion 17 is formed, which cyclizes to stable naphthofuran photoproducts 9-12. The regiochemistry of the deuteration in solvent-assisted PT was correlated with the NBO charges of the corresponding phenolates/naphtholates 5(-)-8(-). Combined experimental and theoretical data indicate that solvent-assisted PT takes place via a sequential mechanism involving first deprotonation of the phenol/naphthol, followed by the protonation by H2O in the S1 state of phenolate/naphtholate. The site of protonation by H2O is mostly at the naphthalene α-position.


Assuntos
Carbono/química , Naftóis/química , Fenóis/química , Prótons , Teoria Quântica
19.
J Phys Chem B ; 127(13): 3016-3025, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36972466

RESUMO

This work shows how the N 1s photoemission (PE) spectrum of self-associated melamine molecules in aqueous solution has been successfully rationalized using an integrated computational approach encompassing classical metadynamics simulations and quantum calculations based on density functional theory (DFT). The first approach allowed us to describe interacting melamine molecules in explicit waters and to identify dimeric configurations based on π-π and/or H-bonding interactions. Then, N 1s binding energies (BEs) and PE spectra were computed at the DFT level for all structures both in the gas phase and in an implicit solvent. While pure π-stacked dimers show gas-phase PE spectra almost identical to that of the monomer, those of the H-bonded dimers are sensibly affected by NH···NH or NH···NC interactions. Interestingly, the solvation suppresses all of the non-equivalences due to the H-bonds yielding similar PE spectra for all dimers, matching very well our measurements.

20.
J Am Chem Soc ; 134(50): 20340-51, 2012 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-23171214

RESUMO

The mechanisms of nonradiative deactivation of a phenylalanine residue after near-UV photoexcitation have been investigated in an isolated peptide chain model (N-acetylphenylalaninylamide, NAPA) both experimentally and theoretically. Lifetime measurements at the origin of the first ππ* state of jet-cooled NAPA molecules have shown that (i) among the three most stable conformers of the molecule, the folded conformer NAPA B is ∼50-times shorter lived than the extended major conformer NAPA A and (ii) this lifetime is virtually insensitive to deuteration at the NH(2) and NH sites. Concurrent time-dependent density functional theory (TDDFT) based nonadiabatic dynamics simulations in the full dimensionality, carried out for the NAPA B conformer, provided direct insights on novel classes of ultrafast deactivation mechanisms, proceeding through several conical intersections and leading in fine to the ground state. These mechanisms are found to be triggered either (i) by a stretch of the N(Phe)H bond, which leads to an H-transfer to the ring, or (ii) by specific backbone amide distortions. The potential energy surfaces of the NAPA conformers along these critical pathways have been characterized more accurately using the coupled cluster doubles (CC2) method and shown to exhibit barriers that can be overcome with moderate excess energies. These results analyzed in the light of the experimental findings enabled us to assign the short lifetime of NAPA B conformer to a number of easily accessible exit channels from the initial ππ* surface, most importantly the one involving a transfer of electronic excitation to an nπ* surface, induced by distortions of the backbone peptide bond.


Assuntos
Peptídeos/química , Fenilalanina/química , Processos Fotoquímicos , Modelos Moleculares , Simulação de Dinâmica Molecular , Espectrofotometria Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA