Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Nucleic Acids Res ; 49(9): 4934-4943, 2021 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-33956139

RESUMO

Novel tools for in silico design of RNA constructs such as riboregulators are required in order to reduce time and cost to production for the development of diagnostic and therapeutic advances. Here, we present MoiRNAiFold, a versatile and user-friendly tool for de novo synthetic RNA design. MoiRNAiFold is based on Constraint Programming and it includes novel variable types, heuristics and restart strategies for Large Neighborhood Search. Moreover, this software can handle dozens of design constraints and quality measures and improves features for RNA regulation control of gene expression, such as Translation Efficiency calculation. We demonstrate that MoiRNAiFold outperforms any previous software in benchmarking structural RNA puzzles from EteRNA. Importantly, with regard to biologically relevant RNA designs, we focus on RNA riboregulators, demonstrating that the designed RNA sequences are functional both in vitro and in vivo. Overall, we have generated a powerful tool for de novo complex RNA design that we make freely available as a web server (https://moiraibiodesign.com/design/).


Assuntos
RNA/química , Software , Sequência de Bases , Simulação por Computador , Regulação da Expressão Gênica , Conformação de Ácido Nucleico , Biossíntese de Proteínas , Biologia Sintética/métodos
2.
Genome Res ; 27(1): 95-106, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27821408

RESUMO

The impact of RNA structures in coding sequences (CDS) within mRNAs is poorly understood. Here, we identify a novel and highly conserved mechanism of translational control involving RNA structures within coding sequences and the DEAD-box helicase Dhh1. Using yeast genetics and genome-wide ribosome profiling analyses, we show that this mechanism, initially derived from studies of the Brome Mosaic virus RNA genome, extends to yeast and human mRNAs highly enriched in membrane and secreted proteins. All Dhh1-dependent mRNAs, viral and cellular, share key common features. First, they contain long and highly structured CDSs, including a region located around nucleotide 70 after the translation initiation site; second, they are directly bound by Dhh1 with a specific binding distribution; and third, complementary experimental approaches suggest that they are activated by Dhh1 at the translation initiation step. Our results show that ribosome translocation is not the only unwinding force of CDS and uncover a novel layer of translational control that involves RNA helicases and RNA folding within CDS providing novel opportunities for regulation of membrane and secretome proteins.


Assuntos
RNA Helicases DEAD-box/genética , Iniciação Traducional da Cadeia Peptídica , Biossíntese de Proteínas , RNA/genética , Proteínas de Saccharomyces cerevisiae/genética , Bromovirus/genética , Éxons/genética , Regulação da Expressão Gênica/genética , Humanos , Conformação de Ácido Nucleico , Fases de Leitura Aberta/genética , RNA Mensageiro/genética , Ribossomos/genética , Saccharomyces cerevisiae/genética
3.
Nucleic Acids Res ; 46(14): 7339-7353, 2018 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-29771365

RESUMO

Gemin5 is a predominantly cytoplasmic protein that downregulates translation, beyond controlling snRNPs assembly. The C-terminal region harbors a non-canonical RNA-binding site consisting of two domains, RBS1 and RBS2, which differ in RNA-binding capacity and the ability to modulate translation. Here, we show that these domains recognize distinct RNA targets in living cells. Interestingly, the most abundant and exclusive RNA target of the RBS1 domain was Gemin5 mRNA. Biochemical and functional characterization of this target demonstrated that RBS1 polypeptide physically interacts with a predicted thermodynamically stable stem-loop upregulating mRNA translation, thereby counteracting the negative effect of Gemin5 protein on global protein synthesis. In support of this result, destabilization of the stem-loop impairs the stimulatory effect on translation. Moreover, RBS1 stimulates translation of the endogenous Gemin5 mRNA. Hence, although the RBS1 domain downregulates global translation, it positively enhances translation of RNA targets carrying thermodynamically stable secondary structure motifs. This mechanism allows fine-tuning the availability of Gemin5 to play its multiple roles in gene expression control.


Assuntos
Retroalimentação Fisiológica , Biossíntese de Proteínas , RNA/genética , Ribonucleoproteínas Nucleares Pequenas/genética , Sítios de Ligação/genética , Perfilação da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Ligação Proteica , Domínios Proteicos , RNA/química , RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Ribonucleoproteínas Nucleares Pequenas/química , Ribonucleoproteínas Nucleares Pequenas/metabolismo , Proteínas do Complexo SMN
4.
Nucleic Acids Res ; 46(3): e15, 2018 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-29155959

RESUMO

Small non-coding RNAs (sncRNAs) are highly abundant molecules that regulate essential cellular processes and are classified according to sequence and structure. Here we argue that read profiles from size-selected RNA sequencing capture the post-transcriptional processing specific to each RNA family, thereby providing functional information independently of sequence and structure. We developed SeRPeNT, a new computational method that exploits reproducibility across replicates and uses dynamic time-warping and density-based clustering algorithms to identify, characterize and compare sncRNAs by harnessing the power of read profiles. We applied SeRPeNT to: (i) generate an extended human annotation with 671 new sncRNAs from known classes and 131 from new potential classes, (ii) show pervasive differential processing of sncRNAs between cell compartments and (iii) predict new molecules with miRNA-like behaviour from snoRNA, tRNA and long non-coding RNA precursors, potentially dependent on the miRNA biogenesis pathway. Furthermore, we validated experimentally four predicted novel non-coding RNAs: a miRNA, a snoRNA-derived miRNA, a processed tRNA and a new uncharacterized sncRNA. SeRPeNT facilitates fast and accurate discovery and characterization of sncRNAs at an unprecedented scale. SeRPeNT code is available under the MIT license at https://github.com/comprna/SeRPeNT.


Assuntos
Algoritmos , MicroRNAs/genética , RNA Longo não Codificante/genética , RNA Nucleolar Pequeno/genética , Pequeno RNA não Traduzido/genética , RNA de Transferência/genética , Sequência de Bases , Análise por Conglomerados , Perfil Genético , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Internet , MicroRNAs/classificação , Anotação de Sequência Molecular , RNA Longo não Codificante/classificação , RNA Nucleolar Pequeno/classificação , Pequeno RNA não Traduzido/classificação , RNA de Transferência/classificação , Reprodutibilidade dos Testes , Software
5.
PLoS Comput Biol ; 14(3): e1006078, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29596423

RESUMO

RNA-protein binding is critical to gene regulation, controlling fundamental processes including splicing, translation, localization and stability, and aberrant RNA-protein interactions are known to play a role in a wide variety of diseases. However, molecular understanding of RNA-protein interactions remains limited; in particular, identification of RNA motifs that bind proteins has long been challenging, especially when such motifs depend on both sequence and structure. Moreover, although RNA binding proteins (RBPs) often contain more than one binding domain, algorithms capable of identifying more than one binding motif simultaneously have not been developed. In this paper we present a novel pipeline to determine binding peaks in crosslinking immunoprecipitation (CLIP) data, to discover multiple possible RNA sequence/structure motifs among them, and to experimentally validate such motifs. At the core is a new semi-automatic algorithm SARNAclust, the first unsupervised method to identify and deconvolve multiple sequence/structure motifs simultaneously. SARNAclust computes similarity between sequence/structure objects using a graph kernel, providing the ability to isolate the impact of specific features through the bulge graph formalism. Application of SARNAclust to synthetic data shows its capability of clustering 5 motifs at once with a V-measure value of over 0.95, while GraphClust achieves only a V-measure of 0.083 and RNAcontext cannot detect any of the motifs. When applied to existing eCLIP sets, SARNAclust finds known motifs for SLBP and HNRNPC and novel motifs for several other RBPs such as AGGF1, AKAP8L and ILF3. We demonstrate an experimental validation protocol, a targeted Bind-n-Seq-like high-throughput sequencing approach that relies on RNA inverse folding for oligo pool design, that can validate the components within the SLBP motif. Finally, we use this protocol to experimentally interrogate the SARNAclust motif predictions for protein ILF3. Our results support a newly identified partially double-stranded UUUUUGAGA motif similar to that known for the splicing factor HNRNPC.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala/métodos , Análise de Sequência de RNA/métodos , Algoritmos , Sítios de Ligação , Análise por Conglomerados , Imunoprecipitação , Conformação de Ácido Nucleico , Motivos de Nucleotídeos , Ligação Proteica , RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/genética , Proteínas com Motivo de Reconhecimento de RNA/fisiologia , Proteínas de Ligação a RNA/metabolismo
7.
Bioinformatics ; 32(12): i360-i368, 2016 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-27307638

RESUMO

MOTIVATION: RNA thermometers (RNATs) are cis-regulatory elements that change secondary structure upon temperature shift. Often involved in the regulation of heat shock, cold shock and virulence genes, RNATs constitute an interesting potential resource in synthetic biology, where engineered RNATs could prove to be useful tools in biosensors and conditional gene regulation. RESULTS: Solving the 2-temperature inverse folding problem is critical for RNAT engineering. Here we introduce RNAiFold2T, the first Constraint Programming (CP) and Large Neighborhood Search (LNS) algorithms to solve this problem. Benchmarking tests of RNAiFold2T against existent programs (adaptive walk and genetic algorithm) inverse folding show that our software generates two orders of magnitude more solutions, thus allowing ample exploration of the space of solutions. Subsequently, solutions can be prioritized by computing various measures, including probability of target structure in the ensemble, melting temperature, etc. Using this strategy, we rationally designed two thermosensor internal ribosome entry site (thermo-IRES) elements, whose normalized cap-independent translation efficiency is approximately 50% greater at 42 °C than 30 °C, when tested in reticulocyte lysates. Translation efficiency is lower than that of the wild-type IRES element, which on the other hand is fully resistant to temperature shift-up. This appears to be the first purely computational design of functional RNA thermoswitches, and certainly the first purely computational design of functional thermo-IRES elements. AVAILABILITY: RNAiFold2T is publicly available as part of the new release RNAiFold3.0 at https://github.com/clotelab/RNAiFold and http://bioinformatics.bc.edu/clotelab/RNAiFold, which latter has a web server as well. The software is written in C ++ and uses OR-Tools CP search engine. CONTACT: clote@bc.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Dobramento de RNA , Algoritmos , Sequência de Bases , Sítios Internos de Entrada Ribossomal , Conformação de Ácido Nucleico , RNA , Software
8.
Nucleic Acids Res ; 43(W1): W513-21, 2015 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019176

RESUMO

UNLABELLED: Several algorithms for RNA inverse folding have been used to design synthetic riboswitches, ribozymes and thermoswitches, whose activity has been experimentally validated. The RNAiFold software is unique among approaches for inverse folding in that (exhaustive) constraint programming is used instead of heuristic methods. For that reason, RNAiFold can generate all sequences that fold into the target structure or determine that there is no solution. RNAiFold 2.0 is a complete overhaul of RNAiFold 1.0, rewritten from the now defunct COMET language to C++. The new code properly extends the capabilities of its predecessor by providing a user-friendly pipeline to design synthetic constructs having the functionality of given Rfam families. In addition, the new software supports amino acid constraints, even for proteins translated in different reading frames from overlapping coding sequences; moreover, structure compatibility/incompatibility constraints have been expanded. With these features, RNAiFold 2.0 allows the user to design single RNA molecules as well as hybridization complexes of two RNA molecules. AVAILABILITY: the web server, source code and linux binaries are publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold2.0.


Assuntos
Dobramento de RNA , RNA/química , Software , Algoritmos , Internet , Conformação de Ácido Nucleico , Análise de Sequência de Proteína , Análise de Sequência de RNA
9.
BMC Bioinformatics ; 17(1): 424, 2016 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-27756204

RESUMO

BACKGROUND: RNA inverse folding is the problem of finding one or more sequences that fold into a user-specified target structure s 0, i.e. whose minimum free energy secondary structure is identical to the target s 0. Here we consider the ensemble of all RNA sequences that have low free energy with respect to a given target s 0. RESULTS: We introduce the program RNAdualPF, which computes the dual partition function Z ∗, defined as the sum of Boltzmann factors exp(-E(a,s 0)/RT) of all RNA nucleotide sequences a compatible with target structure s 0. Using RNAdualPF, we efficiently sample RNA sequences that approximately fold into s 0, where additionally the user can specify IUPAC sequence constraints at certain positions, and whether to include dangles (energy terms for stacked, single-stranded nucleotides). Moreover, since we also compute the dual partition function Z ∗(k) over all sequences having GC-content k, the user can require that all sampled sequences have a precise, specified GC-content. Using Z ∗, we compute the dual expected energy 〈E ∗〉, and use it to show that natural RNAs from the Rfam 12.0 database have higher minimum free energy than expected, thus suggesting that functional RNAs are under evolutionary pressure to be only marginally thermodynamically stable. We show that C. elegans precursor microRNA (pre-miRNA) is significantly non-robust with respect to mutations, by comparing the robustness of each wild type pre-miRNA sequence with 2000 [resp. 500] sequences of the same GC-content generated by RNAdualPF, which approximately [resp. exactly] fold into the wild type target structure. We confirm and strengthen earlier findings that precursor microRNAs and bacterial small noncoding RNAs display plasticity, a measure of structural diversity. CONCLUSION: We describe RNAdualPF, which rapidly computes the dual partition function Z ∗ and samples sequences having low energy with respect to a target structure, allowing sequence constraints and specified GC-content. Using different inverse folding software, another group had earlier shown that pre-miRNA is mutationally robust, even controlling for compositional bias. Our opposite conclusion suggests a cautionary note that computationally based insights into molecular evolution may heavily depend on the software used. C/C++-software for RNAdualPF is available at http://bioinformatics.bc.edu/clotelab/RNAdualPF .


Assuntos
Caenorhabditis elegans/genética , Biologia Computacional/métodos , Escherichia coli/genética , Evolução Molecular , MicroRNAs/genética , RNA Nuclear Pequeno/genética , Software , Algoritmos , Animais , Bases de Dados Factuais , RNA/química , Dobramento de RNA , Análise de Sequência de RNA/métodos
10.
PLoS Comput Biol ; 11(4): e1004124, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25884654

RESUMO

Epithelial morphogenesis generates the shape of tissues, organs and embryos and is fundamental for their proper function. It is a dynamic process that occurs at multiple spatial scales from macromolecular dynamics, to cell deformations, mitosis and apoptosis, to coordinated cell rearrangements that lead to global changes of tissue shape. Using time lapse imaging, it is possible to observe these events at a system level. However, to investigate morphogenetic events it is necessary to develop computational tools to extract quantitative information from the time lapse data. Toward this goal, we developed an image-based computational pipeline to preprocess, segment and track epithelial cells in 4D confocal microscopy data. The computational pipeline we developed, for the first time, detects the adherens junctions of epithelial cells in 3D, without the need to first detect cell nuclei. We accentuate and detect cell outlines in a series of steps, symbolically describe the cells and their connectivity, and employ this information to track the cells. We validated the performance of the pipeline for its ability to detect vertices and cell-cell contacts, track cells, and identify mitosis and apoptosis in surface epithelia of Drosophila imaginal discs. We demonstrate the utility of the pipeline to extract key quantitative features of cell behavior with which to elucidate the dynamics and biomechanical control of epithelial tissue morphogenesis. We have made our methods and data available as an open-source multiplatform software tool called TTT (http://github.com/morganrcu/TTT).


Assuntos
Junções Aderentes/fisiologia , Junções Aderentes/ultraestrutura , Células Epiteliais/citologia , Células Epiteliais/fisiologia , Imageamento Tridimensional/métodos , Morfogênese/fisiologia , Animais , Adesão Celular/fisiologia , Rastreamento de Células/métodos , Drosophila , Microscopia Confocal/métodos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Nucleic Acids Res ; 42(18): 11752-62, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25209235

RESUMO

Nanotechnology and synthetic biology currently constitute one of the most innovative, interdisciplinary fields of research, poised to radically transform society in the 21st century. This paper concerns the synthetic design of ribonucleic acid molecules, using our recent algorithm, RNAiFold, which can determine all RNA sequences whose minimum free energy secondary structure is a user-specified target structure. Using RNAiFold, we design ten cis-cleaving hammerhead ribozymes, all of which are shown to be functional by a cleavage assay. We additionally use RNAiFold to design a functional cis-cleaving hammerhead as a modular unit of a synthetic larger RNA. Analysis of kinetics on this small set of hammerheads suggests that cleavage rate of computationally designed ribozymes may be correlated with positional entropy, ensemble defect, structural flexibility/rigidity and related measures. Artificial ribozymes have been designed in the past either manually or by SELEX (Systematic Evolution of Ligands by Exponential Enrichment); however, this appears to be the first purely computational design and experimental validation of novel functional ribozymes. RNAiFold is available at http://bioinformatics.bc.edu/clotelab/RNAiFold/.


Assuntos
RNA Catalítico/química , Algoritmos , Sequência de Bases , Biologia Computacional/métodos , Sequência Consenso , Clivagem do RNA , Dobramento de RNA , RNA Catalítico/metabolismo , Biologia Sintética/métodos
13.
J Math Biol ; 70(1-2): 173-96, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24515409

RESUMO

RNA folding pathways play an important role in various biological processes, such as (i) the hok/sok (host-killing/suppression of killing) system in E. coli to check for sufficient plasmid copy number, (ii) the conformational switch in spliced leader (SL) RNA from Leptomonas collosoma, which controls trans splicing of a portion of the '5 exon, and (iii) riboswitches--portions of the 5' untranslated region of messenger RNA that regulate genes by allostery. Since RNA folding pathways are determined by the energy landscape, we describe a novel algorithm, FFTbor2D, which computes the 2D projection of the energy landscape for a given RNA sequence. Given two metastable secondary structures A, B for a given RNA sequence, FFTbor2D computes the Boltzmann probability p(x, y) = Z(x,y)/Z that a secondary structure has base pair distance x from A and distance y from B. Using polynomial interpolationwith the fast Fourier transform,we compute p(x, y) in O(n(5)) time and O(n(2)) space, which is an improvement over an earlier method, which runs in O(n(7)) time and O(n(4)) space. FFTbor2D has potential applications in synthetic biology, where one might wish to design bistable switches having target metastable structures A, B with favorable pathway kinetics. By inverting the transition probability matrix determined from FFTbor2D output, we show that L. collosoma spliced leader RNA has larger mean first passage time from A to B on the 2D energy landscape, than 97.145% of 20,000 sequences, each having metastable structures A, B. Source code and binaries are freely available for download at http://bioinformatics.bc.edu/clotelab/FFTbor2D. The program FFTbor2D is implemented in C++, with optional OpenMP parallelization primitives.


Assuntos
Modelos Moleculares , Conformação de Ácido Nucleico , RNA de Protozoário/química , Regiões 5' não Traduzidas , Algoritmos , Animais , Análise de Fourier , Cinética , Conceitos Matemáticos , Simulação de Dinâmica Molecular , Splicing de RNA , RNA de Protozoário/genética , RNA de Protozoário/metabolismo , RNA Líder para Processamento/química , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo , Trypanosomatina/química , Trypanosomatina/genética , Trypanosomatina/metabolismo
14.
Nucleic Acids Res ; 41(Web Server issue): W465-70, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23700314

RESUMO

Synthetic biology and nanotechnology are poised to make revolutionary contributions to the 21st century. In this article, we describe a new web server to support in silico RNA molecular design. Given an input target RNA secondary structure, together with optional constraints, such as requiring GC-content to lie within a certain range, requiring the number of strong (GC), weak (AU) and wobble (GU) base pairs to lie in a certain range, the RNAiFold web server determines one or more RNA sequences, whose minimum free-energy secondary structure is the target structure. RNAiFold provides access to two servers: RNA-CPdesign, which applies constraint programming, and RNA-LNSdesign, which applies the large neighborhood search heuristic; hence, it is suitable for larger input structures. Both servers can also solve the RNA inverse hybridization problem, i.e. given a representation of the desired hybridization structure, RNAiFold returns two sequences, whose minimum free-energy hybridization is the input target structure. The web server is publicly accessible at http://bioinformatics.bc.edu/clotelab/RNAiFold, which provides access to two specialized servers: RNA-CPdesign and RNA-LNSdesign. Source code for the underlying algorithms, implemented in COMET and supported on linux, can be downloaded at the server website.


Assuntos
Dobramento de RNA , Software , Algoritmos , Composição de Bases , Pareamento de Bases , Sequência de Bases , Simulação por Computador , Internet , RNA/química
15.
Sci Rep ; 14(1): 784, 2024 Jan 08.
Artigo em Inglês | MEDLINE | ID: mdl-38191771

RESUMO

Many epidemiological models and algorithms are used to fit the parameters of a given epidemic curve. On many occasions, fitting algorithms are interleaved with the actual epidemic models, which yields combinations of model-parameters that are hard to compare among themselves. Here, we provide a model-agnostic framework for epidemic parameter fitting that can (fairly) compare different epidemic models without jeopardizing the quality of the fitted parameters. Briefly, we have developed a Python framework that expects a Python function (epidemic model) and epidemic data and performs parameter fitting using automatic configuration. Our framework is capable of fitting parameters for any type of epidemic model, as long as it is provided as a Python function (or even in a different programming language). Moreover, we provide the code for different types of models, as well as the implementation of 4 concrete models with data to fit them. Documentation, code and examples can be found at https://ulog.udl.cat/static/doc/epidemic-gga/html/index.html .

16.
RNA Biol ; 10(12): 1842-52, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24253111

RESUMO

Internal ribosome entry site (IRES) elements govern protein synthesis of mRNAs that bypass cap-dependent translation inhibition under stress conditions. Picornavirus IRES are cis-acting elements, organized in modular domains that recruit the ribosome to internal mRNA sites. The aim of this study was to retrieve short RNA sequences with the capacity to adopt RNA folding patterns conserved with IRES structural subdomains, likely corresponding to RNA modules. We have applied a new program, RNAiFold, an inverse folding algorithm that determines all sequences whose minimum free energy structure is identical to that of the structural domains of interest. Sequences differing by more than 1 nt were clustered. Then, BLASTing one randomly chosen sequence from each cluster of the RNAiFold output, we retrieved viral and cellular sequences among output hits. As a proof of principle, we present the data corresponding to a coding region of Drosophila melanogaster TAF6, a transcription factor-associated protein that contains a structural motif within its coding region potentially folding into an IRES-like subdomain. This RNA region shows a biased codon usage, as predicted from structural constraints at the RNA level, it harbors conserved IRES structural motifs in loops, and interestingly, it has the capacity to confer internal initiation of translation in tissue culture cells.


Assuntos
Algoritmos , RNA Mensageiro/metabolismo , Sequências Reguladoras de Ácido Ribonucleico , Ribossomos/metabolismo , Animais , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Regulação da Expressão Gênica , Modelos Moleculares , Conformação de Ácido Nucleico , Picornaviridae/genética , Dobramento de RNA , Reprodutibilidade dos Testes , Fatores Associados à Proteína de Ligação a TATA/genética , Fator de Transcrição TFIID/genética
17.
J Math Biol ; 65(6-7): 1337-57, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-22159642

RESUMO

Let S denote the set of (possibly noncanonical) base pairs {i, j } of an RNA tertiary structure; i.e. {i, j} ∈ S if there is a hydrogen bond between the ith and jth nucleotide. The page number of S, denoted π(S), is the minimum number k such that Scan be decomposed into a disjoint union of k secondary structures. Here, we show that computing the page number is NP-complete; we describe an exact computation of page number, using constraint programming, and determine the page number of a collection of RNA tertiary structures, for which the topological genus is known. We describe an approximation algorithm from which it follows that ω(S) ≤ π(S) ≤ ω(S) ・log n,where the clique number of S, ω(S), denotes the maximum number of base pairs that pairwise cross each other.


Assuntos
Pareamento de Bases , Modelos Químicos , Conformação de Ácido Nucleico , RNA/química , Ligação de Hidrogênio , Modelos Genéticos , Modelos Moleculares , Termodinâmica
18.
Nucleic Acids Res ; 38(5): 1711-22, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20044352

RESUMO

Given an RNA sequence and two designated secondary structures A, B, we describe a new algorithm that computes a nearly optimal folding pathway from A to B. The algorithm, RNAtabupath, employs a tabu semi-greedy heuristic, known to be an effective search strategy in combinatorial optimization. Folding pathways, sometimes called routes or trajectories, are computed by RNAtabupath in a fraction of the time required by the barriers program of Vienna RNA Package. We benchmark RNAtabupath with other algorithms to compute low energy folding pathways between experimentally known structures of several conformational switches. The RNApathfinder web server, source code for algorithms to compute and analyze pathways and supplementary data are available at http://bioinformatics.bc.edu/clotelab/RNApathfinder.


Assuntos
Algoritmos , RNA/química , Software , Biologia Computacional/métodos , Conformação de Ácido Nucleico , Análise de Sequência de RNA
19.
Elife ; 112022 04 20.
Artigo em Inglês | MEDLINE | ID: mdl-35442882

RESUMO

Chronic inflammation is a major cause of disease. Inflammation resolution is in part directed by the differential stability of mRNAs encoding pro-inflammatory and anti-inflammatory factors. In particular, tristetraprolin (TTP)-directed mRNA deadenylation destabilizes AU-rich element (ARE)-containing mRNAs. However, this mechanism alone cannot explain the variety of mRNA expression kinetics that are required to uncouple degradation of pro-inflammatory mRNAs from the sustained expression of anti-inflammatory mRNAs. Here, we show that the RNA-binding protein CPEB4 acts in an opposing manner to TTP in macrophages: it helps to stabilize anti-inflammatory transcripts harboring cytoplasmic polyadenylation elements (CPEs) and AREs in their 3'-UTRs, and it is required for the resolution of the lipopolysaccharide (LPS)-triggered inflammatory response. Coordination of CPEB4 and TTP activities is sequentially regulated through MAPK signaling. Accordingly, CPEB4 depletion in macrophages impairs inflammation resolution in an LPS-induced sepsis model. We propose that the counterbalancing actions of CPEB4 and TTP, as well as the distribution of CPEs and AREs in their target mRNAs, define transcript-specific decay patterns required for inflammation resolution. Thus, these two opposing mechanisms provide a fine-tuning control of inflammatory transcript destabilization while maintaining the expression of the negative feedback loops required for efficient inflammation resolution; disruption of this balance can lead to disease.


Assuntos
Macrófagos , Estabilidade de RNA , Proteínas de Ligação a RNA , Tristetraprolina , Regiões 3' não Traduzidas , Humanos , Inflamação/metabolismo , Lipopolissacarídeos , Macrófagos/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Tristetraprolina/genética , Tristetraprolina/metabolismo
20.
Elife ; 52016 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-27085088

RESUMO

Ribosome stalling during translation has recently been shown to cause neurodegeneration, yet the signaling pathways triggered by stalled elongation complexes are unknown. To investigate these pathways we analyzed the brain of C57BL/6J-Gtpbp2(nmf205)(-/-) mice in which neuronal elongation complexes are stalled at AGA codons due to deficiencies in a tRNA(Arg)UCU tRNA and GTPBP2, a mammalian ribosome rescue factor. Increased levels of phosphorylation of eIF2α (Ser51) were detected prior to neurodegeneration in these mice and transcriptome analysis demonstrated activation of ATF4, a key transcription factor in the integrated stress response (ISR) pathway. Genetic experiments showed that this pathway was activated by the eIF2α kinase, GCN2, in an apparent deacylated tRNA-independent fashion. Further we found that the ISR attenuates neurodegeneration in C57BL/6J-Gtpbp2(nmf205)(-/-) mice, underscoring the importance of cellular and stress context on the outcome of activation of this pathway. These results demonstrate the critical interplay between translation elongation and initiation in regulating neuron survival during cellular stress.


Assuntos
Elongação Traducional da Cadeia Peptídica , Iniciação Traducional da Cadeia Peptídica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Ribossomos/metabolismo , Fator 4 Ativador da Transcrição/biossíntese , Animais , Fator de Iniciação 2 em Eucariotos/metabolismo , Proteínas de Ligação ao GTP/deficiência , Perfilação da Expressão Gênica , Camundongos Endogâmicos C57BL , Neurônios/fisiologia , Fosforilação , Processamento de Proteína Pós-Traducional , RNA de Transferência de Arginina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA