RESUMO
Rationale and Objectives: Up to 20% of idiopathic interstitial lung disease is familial, referred to as familial pulmonary fibrosis (FPF). An integrated analysis of FPF genetic risk was performed by comprehensively evaluating for genetic rare variants (RVs) in a large cohort of FPF kindreds. Methods: Whole-exome sequencing and/or candidate gene sequencing from affected individuals in 569 FPF kindreds was performed, followed by cosegregation analysis in large kindreds, gene burden analysis, gene-based risk scoring, cell-type enrichment analysis, and coexpression network construction. Measurements and Main Results: It was found that 14.9-23.4% of genetic risk in kindreds could be explained by RVs in genes previously linked to FPF, predominantly telomere-related genes. New candidate genes were identified in a small number of families-including SYDE1, SERPINB8, GPR87, and NETO1-and tools were developed for evaluation and prioritization of RV-containing genes across kindreds. Several pathways were enriched for RV-containing genes in FPF, including focal adhesion and mitochondrial complex I assembly. By combining single-cell transcriptomics with prioritized candidate genes, expression of RV-containing genes was discovered to be enriched in smooth muscle cells, type II alveolar epithelial cells, and endothelial cells. Conclusions: In the most comprehensive FPF genetic study to date, the prevalence of RVs in known FPF-related genes was defined, and new candidate genes and pathways relevant to FPF were identified. However, new RV-containing genes shared across multiple kindreds were not identified, thereby suggesting that heterogeneous genetic variants involving a variety of genes and pathways mediate genetic risk in most FPF kindreds.
Assuntos
Doenças Pulmonares Intersticiais , Fibrose Pulmonar , Humanos , Fibrose Pulmonar/genética , Células Endoteliais , Doenças Pulmonares Intersticiais/genética , Fatores de Risco , Telômero , Predisposição Genética para Doença/genética , Receptores de Ácidos Lisofosfatídicos/genéticaRESUMO
Rationale: The preclinical natural history of progressive lung fibrosis is poorly understood.Objectives: Our goals were to identify risk factors for interstitial lung abnormalities (ILA) on high-resolution computed tomography (HRCT) scans and to determine progression toward clinical interstitial lung disease (ILD) among subjects in a longitudinal cohort of self-reported unaffected first-degree relatives of patients with familial interstitial pneumonia.Methods: Enrollment evaluation included a health history and exposure questionnaire and HRCT scans, which were categorized by visual assessment as no ILA, early/mild ILA, or extensive ILA. The study endpoint was met when ILA were extensive or when ILD was diagnosed clinically. Among subjects with adequate study time to complete 5-year follow-up HRCT, the proportion with ILD events (endpoint met or radiographic ILA progression) was calculated.Measurements and Main Results: Among 336 subjects, the mean age was 53.1 (SD, 9.9) years. Those with ILA (early/mild [n = 74] or extensive [n = 3]) were older, were more likely to be ever smokers, had shorter peripheral blood mononuclear cell telomeres, and were more likely to carry the MUC5B risk allele. Self-reported occupational or environmental exposures, including aluminum smelting, lead, birds, and mold, were independently associated with ILA. Among 129 subjects with sufficient study time, 25 (19.4%) had an ILD event by 5 years after enrollment; of these, 12 met the study endpoint and another 13 had radiologic progression of ILA. ILD events were more common among those with early/mild ILA at enrollment (63.3% vs. 6.1%; P < 0.0001).Conclusions: Rare and common environmental exposures are independent risk factors for radiologic abnormalities. In 5 years, progression of ILA occurred in most individuals with early ILA detected at enrollment.
Assuntos
Doenças Pulmonares Intersticiais/diagnóstico por imagem , Pulmão/diagnóstico por imagem , Adulto , Idoso , Fumar Cigarros/epidemiologia , Estudos de Coortes , Progressão da Doença , Exposição Ambiental/estatística & dados numéricos , Feminino , Volume Expiratório Forçado , Predisposição Genética para Doença , Genótipo , Humanos , Estudos Longitudinais , Pulmão/fisiopatologia , Doenças Pulmonares Intersticiais/epidemiologia , Doenças Pulmonares Intersticiais/genética , Doenças Pulmonares Intersticiais/fisiopatologia , Masculino , Pessoa de Meia-Idade , Mucina-5B/genética , Capacidade de Difusão Pulmonar , Tomografia Computadorizada por Raios X , Capacidade Pulmonar Total , Capacidade VitalRESUMO
Exertional dyspnea has been documented in US military personnel after deployment to Iraq and Afghanistan. We studied whether continued exertional dyspnea in this patient population is associated with pulmonary vascular disease (PVD). We performed detailed histomorphometry of pulmonary vasculature in 52 Veterans with biopsy-proven post-deployment respiratory syndrome (PDRS) and then recruited five of these same Veterans with continued exertional dyspnea to undergo a follow-up clinical evaluation, including symptom questionnaire, pulmonary function testing, surface echocardiography, and right heart catheterization (RHC). Morphometric evaluation of pulmonary arteries showed significantly increased intima and media thicknesses, along with collagen deposition (fibrosis), in Veterans with PDRS compared to non-diseased (ND) controls. In addition, pulmonary veins in PDRS showed increased intima and adventitia thicknesses with prominent collagen deposition compared to controls. Of the five Veterans involved in our clinical follow-up study, three had borderline or overt right ventricle (RV) enlargement by echocardiography and evidence of pulmonary hypertension (PH) on RHC. Together, our studies suggest that PVD with predominant venular fibrosis is common in PDRS and development of PH may explain exertional dyspnea and exercise limitation in some Veterans with PDRS.
Assuntos
Campanha Afegã de 2001- , Hipertensão Pulmonar , Artéria Pulmonar , Humanos , Masculino , Artéria Pulmonar/patologia , Artéria Pulmonar/fisiopatologia , Artéria Pulmonar/diagnóstico por imagem , Adulto , Hipertensão Pulmonar/patologia , Hipertensão Pulmonar/fisiopatologia , Hipertensão Pulmonar/etiologia , Pessoa de Meia-Idade , Feminino , Guerra do Iraque 2003-2011 , Veias Pulmonares/patologia , Veias Pulmonares/fisiopatologia , Veias Pulmonares/diagnóstico por imagem , Dispneia/etiologia , Dispneia/fisiopatologia , Veteranos , Estudos de Casos e Controles , Saúde dos Veteranos , Biópsia , FibroseRESUMO
Rationale: Heterogeneous characteristics are observed in familial pulmonary fibrosis (FPF), suggesting that nongenetic factors contribute to disease manifestations. Objectives: To determine the relationship between environmental exposures and disease characteristics of FPF, including the morphological characteristics on chest computed tomography (CT) scan, and timing of FPF symptom onset, lung transplantation, or death. Methods: Subjects with FPF with an exposure questionnaire and chest CT were selected from a prospective cohort at Vanderbilt. Disease characteristics were defined by lung parenchymal findings on chest CT associated with fibrotic hypersensitivity pneumonitis (fHP) or usual interstitial pneumonia (UIP) and by time from birth to symptom onset or a composite of lung transplantation or death. After assessing the potential for confounding by sex or smoking, adjusted logistic or Cox proportional hazards regression models identified exposures associated with fHP or UIP CT findings. Findings were validated in a cohort of patients with sporadic pulmonary fibrosis enrolled in the LTRC (Lung Tissue Research Consortium) study. Results: Among 159 subjects with FPF, 98 (61.6%) were males and 96 (60.4%) were ever-smokers. Males were less likely to have CT features of fHP, including mosaic attenuation (FPF: adjusted [for sex and smoking] odds ratio [aOR], 0.27; 95% confidence interval [CI], 0.09-0.76; P = 0.01; LTRC: aOR, 0.35; 95% CI, 0.21-0.61; P = 0.0002). Organic exposures, however, were not consistently associated with fHP features in either cohort. Smoking was a risk factor for honeycombing in both cohorts (FPF: aOR, 2.19; 95% CI, 1.12-4.28; P = 0.02; LTRC: aOR, 1.69; 95% CI, 1.22-2.33; P = 0.002). Rock dust exposure may also be associated with honeycombing, although the association was not statistically-significant when accounting for sex and smoking (FPF: aOR, 2.27; 95% CI, 0.997-5.15; P = 0.051; LTRC: aOR, 1.51; 95% CI, 0.97-2.33; P = 0.07). In the FPF cohort, ever-smokers experienced a shorter transplant-free survival (adjusted hazard ratio, 1.64; 95% CI, 1.07-2.52; P = 0.02), whereas sex was not associated with differential survival (male adjusted hazard ratio, 0.75; 95% CI, 0.50-1.14; P = 0.18). Conclusions: In FPF, smoking contributes to shortened transplant-free survival and development of honeycombing, a finding that is also likely applicable to sporadic pulmonary fibrosis. Females are more likely to manifest CT features of fHP (mosaic attenuation), a finding that was incompletely explained by sex differences in exposures. These findings may have implications for pulmonary fibrosis classification and management.