Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
1.
Nucleic Acids Res ; 52(7): 4098-4107, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38499480

RESUMO

Long single-stranded DNA (ssDNA) is a versatile molecular reagent with applications including RNA-guided genome engineering and DNA nanotechnology, yet its production is typically resource-intensive. We introduce a novel method utilizing an engineered Escherichia coli 'helper' strain and phagemid system that simplifies long ssDNA generation to a straightforward transformation and purification procedure. Our method obviates the need for helper plasmids and their associated contamination by integrating M13mp18 genes directly into the E. coli chromosome. We achieved ssDNA lengths ranging from 504 to 20 724 nt with titers up to 250 µg/l following alkaline lysis purification. The efficacy of our system was confirmed through its application in primary T-cell genome modifications and DNA origami folding. The reliability, scalability and ease of our approach promise to unlock new experimental applications requiring large quantities of long ssDNA.


Assuntos
DNA de Cadeia Simples , Escherichia coli , DNA de Cadeia Simples/genética , DNA de Cadeia Simples/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Engenharia Genética/métodos , Plasmídeos/genética
2.
Proc Natl Acad Sci U S A ; 118(40)2021 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-34588308

RESUMO

Receptor clustering plays a key role in triggering cellular activation, but the relationship between the spatial configuration of clusters and the elicitation of downstream intracellular signals remains poorly understood. We developed a DNA-origami-based system that is easily adaptable to other cellular systems and enables rich interrogation of responses to a variety of spatially defined inputs. Using a chimeric antigen receptor (CAR) T cell model system with relevance to cancer therapy, we studied signaling dynamics at single-cell resolution. We found that the spatial arrangement of receptors determines the ligand density threshold for triggering and encodes the temporal kinetics of signaling activities. We also showed that signaling sensitivity of a small cluster of high-affinity ligands is enhanced when surrounded by nonstimulating low-affinity ligands. Our results suggest that cells measure spatial arrangements of ligands, translate that information into distinct signaling dynamics, and provide insights into engineering immunotherapies.


Assuntos
DNA/imunologia , Receptores de Antígenos de Linfócitos T/imunologia , Receptores de Antígenos Quiméricos/imunologia , Transdução de Sinais/imunologia , Linfócitos T/imunologia , Antígenos/imunologia , Linhagem Celular Tumoral , Humanos , Imunoterapia/métodos , Células Jurkat , Cinética , Ligantes , Ativação Linfocitária/imunologia
3.
J Struct Biol ; 209(2): 107437, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31866389

RESUMO

Cryo-EM samples prepared using traditional methods often suffer from too few particles, poor particle distribution, strongly biased orientation, or damage from the air-water interface. Here we report that functionalization of graphene oxide (GO) coated grids with amino groups concentrates samples on the grid with improved distribution and orientation. By introducing a PEG spacer, particles are kept away from both the GO surface and the air-water interface, protecting them from potential denaturation.


Assuntos
Microscopia Crioeletrônica/métodos , Grafite/química , Imagem Individual de Molécula/métodos , Água/química , Aminas/química , Polietilenoglicóis/química
4.
Nucleic Acids Res ; 44(11): e102, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27036861

RESUMO

Scalable production of DNA nanostructures remains a substantial obstacle to realizing new applications of DNA nanotechnology. Typical DNA nanostructures comprise hundreds of DNA oligonucleotide strands, where each unique strand requires a separate synthesis step. New design methods that reduce the strand count for a given shape while maintaining overall size and complexity would be highly beneficial for efficiently producing DNA nanostructures. Here, we report a method for folding a custom template strand by binding individual staple sequences to multiple locations on the template. We built several nanostructures for well-controlled testing of various design rules, and demonstrate folding of a 6-kb template by as few as 10 unique strand sequences binding to 10 ± 2 locations on the template strand.


Assuntos
DNA/química , Nanoestruturas , Conformação de Ácido Nucleico , Sequência de Bases , Nanotecnologia , Oligonucleotídeos/química
5.
Nature ; 459(7245): 414-8, 2009 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-19458720

RESUMO

Molecular self-assembly offers a 'bottom-up' route to fabrication with subnanometre precision of complex structures from simple components. DNA has proved to be a versatile building block for programmable construction of such objects, including two-dimensional crystals, nanotubes, and three-dimensional wireframe nanopolyhedra. Templated self-assembly of DNA into custom two-dimensional shapes on the megadalton scale has been demonstrated previously with a multiple-kilobase 'scaffold strand' that is folded into a flat array of antiparallel helices by interactions with hundreds of oligonucleotide 'staple strands'. Here we extend this method to building custom three-dimensional shapes formed as pleated layers of helices constrained to a honeycomb lattice. We demonstrate the design and assembly of nanostructures approximating six shapes-monolith, square nut, railed bridge, genie bottle, stacked cross, slotted cross-with precisely controlled dimensions ranging from 10 to 100 nm. We also show hierarchical assembly of structures such as homomultimeric linear tracks and heterotrimeric wireframe icosahedra. Proper assembly requires week-long folding times and calibrated monovalent and divalent cation concentrations. We anticipate that our strategy for self-assembling custom three-dimensional shapes will provide a general route to the manufacture of sophisticated devices bearing features on the nanometre scale.


Assuntos
DNA/química , Nanoestruturas/química , Nanotecnologia/métodos , Conformação de Ácido Nucleico , DNA/ultraestrutura , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura
6.
Proc Natl Acad Sci U S A ; 109(30): 11920-7, 2012 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-22797899

RESUMO

Rapid advances in DNA sequencing promise to enable new diagnostics and individualized therapies. Achieving personalized medicine, however, will require extensive research on highly reidentifiable, integrated datasets of genomic and health information. To assist with this, participants in the Personal Genome Project choose to forgo privacy via our institutional review board- approved "open consent" process. The contribution of public data and samples facilitates both scientific discovery and standardization of methods. We present our findings after enrollment of more than 1,800 participants, including whole-genome sequencing of 10 pilot participant genomes (the PGP-10). We introduce the Genome-Environment-Trait Evidence (GET-Evidence) system. This tool automatically processes genomes and prioritizes both published and novel variants for interpretation. In the process of reviewing the presumed healthy PGP-10 genomes, we find numerous literature references implying serious disease. Although it is sometimes impossible to rule out a late-onset effect, stringent evidence requirements can address the high rate of incidental findings. To that end we develop a peer production system for recording and organizing variant evaluations according to standard evidence guidelines, creating a public forum for reaching consensus on interpretation of clinically relevant variants. Genome analysis becomes a two-step process: using a prioritized list to record variant evaluations, then automatically sorting reviewed variants using these annotations. Genome data, health and trait information, participant samples, and variant interpretations are all shared in the public domain-we invite others to review our results using our participant samples and contribute to our interpretations. We offer our public resource and methods to further personalized medical research.


Assuntos
Bases de Dados Genéticas , Variação Genética , Genoma Humano/genética , Fenótipo , Medicina de Precisão/métodos , Software , Linhagem Celular , Coleta de Dados , Humanos , Medicina de Precisão/tendências , Análise de Sequência de DNA
7.
bioRxiv ; 2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38562860

RESUMO

We describe design principles for accurate folding of three-dimensional DNA origami. To evaluate design rules, we reduced the problem of DNA strand routing to the known problem of shortest-path finding in a weighted graph. To score candidate DNA strand routes we used a thermodynamic model that accounts for enthalpic and entropic contributions of initial binding, hybridization, and DNA loop closure. We encoded and analyzed new and previously reported design heuristics. Using design principles emerging from this analysis, we redesigned and fabricated multiple shapes and compared their folding accuracy using electrophoretic mobility analysis and electron microscopy imaging. We demonstrate accurate folding can be achieved by optimizing staple routes using our model, and provide a computational framework for applying our methodology to any design.

8.
bioRxiv ; 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38464036

RESUMO

Long single-stranded DNA (ssDNA) is a versatile molecular reagent with applications including RNA-guided genome engineering and DNA nanotechnology, yet its production is typically resource-intensive. We introduce a novel method utilizing an engineered E. coli "helper" strain and phagemid system that simplifies long ssDNA generation to a straightforward transformation and purification procedure. Our method obviates the need for helper plasmids and their associated contamination by integrating M13mp18 genes directly into the E. coli chromosome. We achieved ssDNA lengths ranging from 504 to 20,724 nucleotides with titers up to 250 µg/L following alkaline-lysis purification. The efficacy of our system was confirmed through its application in primary T cell genome modifications and DNA origami folding. The reliability, scalability, and ease of our approach promises to unlock new experimental applications requiring large quantities of long ssDNA.

9.
Methods Mol Biol ; 2654: 303-312, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37106190

RESUMO

Many plasma membrane receptors and ligands form nanoscale clusters on the plasma membrane surface. However, methods for directly and precisely manipulating nanoscale protein localization are limited, making understanding the effects of this clustering difficult. DNA origami allows precise control over nanoscale protein localization with high fidelity and adaptability. Here, we describe how we have used this technique to study how nanoscale protein clustering affects phagocytosis. We provide protocols for conjugating DNA origami structures to supported lipid bilayer-coated beads to assay phagocytosis and planar glass coverslips for TIRF microscopy. The core aspects of this protocol can be translated to study other immune signaling pathways and should enable the implementation of previously inaccessible investigations.


Assuntos
DNA , Fagocitose , Membrana Celular , DNA/química , Bicamadas Lipídicas , Transdução de Sinais
10.
Nucleic Acids Res ; 37(15): 5001-6, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19531737

RESUMO

DNA nanotechnology exploits the programmable specificity afforded by base-pairing to produce self-assembling macromolecular objects of custom shape. For building megadalton-scale DNA nanostructures, a long 'scaffold' strand can be employed to template the assembly of hundreds of oligonucleotide 'staple' strands into a planar antiparallel array of cross-linked helices. We recently adapted this 'scaffolded DNA origami' method to producing 3D shapes formed as pleated layers of double helices constrained to a honeycomb lattice. However, completing the required design steps can be cumbersome and time-consuming. Here we present caDNAno, an open-source software package with a graphical user interface that aids in the design of DNA sequences for folding 3D honeycomb-pleated shapes A series of rectangular-block motifs were designed, assembled, and analyzed to identify a well-behaved motif that could serve as a building block for future studies. The use of caDNAno significantly reduces the effort required to design 3D DNA-origami structures. The software is available at http://cadnano.org/, along with example designs and video tutorials demonstrating their construction. The source code is released under the MIT license.


Assuntos
DNA/química , Nanoestruturas/química , Software , DNA/ultraestrutura , Eletroforese em Gel de Ágar , Microscopia Eletrônica de Transmissão , Nanoestruturas/ultraestrutura , Conformação de Ácido Nucleico
11.
Nat Biotechnol ; 39(3): 378-386, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33077960

RESUMO

Correct reconstruction of macromolecular structure by cryo-electron microscopy (cryo-EM) relies on accurate determination of the orientation of single-particle images. For small (<100 kDa) DNA-binding proteins, obtaining particle images with sufficiently asymmetric features to correctly guide alignment is challenging. We apply DNA origami to construct molecular goniometers-instruments that precisely orient objects-and use them to dock a DNA-binding protein on a double-helix stage that has user-programmable tilt and rotation angles. We construct goniometers with 14 different stage configurations to orient and visualize the protein just above the cryo-EM grid surface. Each goniometer has a distinct barcode pattern that we use during particle classification to assign angle priors to the bound protein. We use goniometers to obtain a 6.5-Å structure of BurrH, an 82-kDa DNA-binding protein whose helical pseudosymmetry prevents accurate image orientation using traditional cryo-EM. Our approach should be adaptable to other DNA-binding proteins as well as small proteins fused to DNA-binding domains.


Assuntos
Microscopia Crioeletrônica/métodos , Proteínas de Ligação a DNA/ultraestrutura , DNA/química , Proteínas de Ligação a DNA/química , Conformação de Ácido Nucleico , Conformação Proteica
12.
Elife ; 102021 06 03.
Artigo em Inglês | MEDLINE | ID: mdl-34080973

RESUMO

Macrophages destroy pathogens and diseased cells through Fcγ receptor (FcγR)-driven phagocytosis of antibody-opsonized targets. Phagocytosis requires activation of multiple FcγRs, but the mechanism controlling the threshold for response is unclear. We developed a DNA origami-based engulfment system that allows precise nanoscale control of the number and spacing of ligands. When the number of ligands remains constant, reducing ligand spacing from 17.5 nm to 7 nm potently enhances engulfment, primarily by increasing efficiency of the engulfment-initiation process. Tighter ligand clustering increases receptor phosphorylation, as well as proximal downstream signals. Increasing the number of signaling domains recruited to a single ligand-receptor complex was not sufficient to recapitulate this effect, indicating that clustering of multiple receptors is required. Our results suggest that macrophages use information about local ligand densities to make critical engulfment decisions, which has implications for the mechanism of antibody-mediated phagocytosis and the design of immunotherapies.


The word 'phagocytosis' means cellular eating. It is the process by which cells extend their membranes around foreign particles and engulf them. Macrophages, a type of immune cell found in every tissue of the body, perform phagocytosis to eat pathogens and diseased cells. To avoid eating healthy cells, macrophages focus on targets marked by proteins called antibodies. They look for cells coated with high levels of a type of antibody called immunoglobulin G, or IgG for short, but only eat cells coated with enough IgG, raising the question, can macrophages count? Macrophages recognize IgG antibodies using cell surface receptors called Fc-gamma Receptors. When these receptors bind to IgG, they cluster together. Researchers do not yet know how the number of IgG antibodies per cluster, or the spacing between them, affects phagocytosis. To find this out, researchers need to be able to manipulate the clustering experimentally. One way to do this is using a technique called DNA origami. This technique creates nanoscale patterns of DNA strands on a target surface. If the part of a receptor that interacts with its target is then replaced with a complementary DNA strand to the strands on the target surface, the receptor will bind the surface following the nanoscale pattern. This allows researchers to generate synthetic targets with specific patterns of receptor-target interaction. Kern et al. replaced the part of the macrophage Fc-gamma Receptor that interacts with IgG with a strand of DNA. They then used DNA origami to arrange complementary DNA strands on pegboards and attached these pegboards to silica beads. The different arrangements of DNA on these pegboards mimicked the types of antibody clusters macrophages might encounter on the surfaces of the cells and particles they have to engulf in the body. Kern et al. found that tight clusters of the DNA targets on the pegboards made the macrophages most likely to begin phagocytosis, particularly clusters of eight or more DNA strands spaced less than seven nanometers apart. Macrophages encountering these tight clusters showed an increase in Fc-gamma receptor activation, which is crucial for macrophage attack. Whether or not macrophages can count, they can at least sense the level of clustering of IgG antibodies to determine if a target should be engulfed. Doctors use antibody therapies that rely on Fc-gamma receptor engagement to treat cancer, autoimmune and neurodegenerative diseases. Understanding how clustering affects phagocytosis could aid in the design of new antibody treatments. It could also help improve the design of synthetic receptors to create designer immune cells that can attack specific targets. The next step will be to recreate the results from the synthetic system used by Kern et al. with natural receptors and antibodies.


Assuntos
DNA/metabolismo , Ativação de Macrófagos , Macrófagos/metabolismo , Nanotecnologia , Fagocitose , Receptores de Antígenos Quiméricos/metabolismo , Receptores de IgG/metabolismo , Animais , DNA/genética , Células HEK293 , Humanos , Cinética , Ligantes , Macrófagos/imunologia , Camundongos , Conformação de Ácido Nucleico , Fosforilação , Células RAW 264.7 , Receptores de Antígenos Quiméricos/genética , Receptores de IgG/genética , Transdução de Sinais , Células THP-1
13.
J Am Chem Soc ; 131(43): 15903-8, 2009 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-19807088

RESUMO

Molecular self-assembly using DNA as a structural building block has proven to be an efficient route to the construction of nanoscale objects and arrays of increasing complexity. Using the remarkable "scaffolded DNA origami" strategy, Rothemund demonstrated that a long single-stranded DNA from a viral genome (M13) can be folded into a variety of custom two-dimensional (2D) shapes using hundreds of short synthetic DNA molecules as staple strands. More recently, we generalized a strategy to build custom-shaped, three-dimensional (3D) objects formed as pleated layers of helices constrained to a honeycomb lattice, with precisely controlled dimensions ranging from 10 to 100 nm. Here we describe a more compact design for 3D origami, with layers of helices packed on a square lattice, that can be folded successfully into structures of designed dimensions in a one-step annealing process, despite the increased density of DNA helices. A square lattice provides a more natural framework for designing rectangular structures, the option for a more densely packed architecture, and the ability to create surfaces that are more flat than is possible with the honeycomb lattice. Thus enabling the design and construction of custom 3D shapes from helices packed on a square lattice provides a general foundational advance for increasing the versatility and scope of DNA nanotechnology.


Assuntos
DNA/química , Conformação de Ácido Nucleico
14.
Synth Biol (Oxf) ; 3(1)2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30984875

RESUMO

DNA origami, a method for constructing nanoscale objects, relies on a long single strand of DNA to act as the 'scaffold' to template assembly of numerous short DNA oligonucleotide 'staples'. The ability to generate custom scaffold sequences can greatly benefit DNA origami design processes. Custom scaffold sequences can provide better control of the overall size of the final object and better control of low-level structural details, such as locations of specific base pairs within an object. Filamentous bacteriophages and related phagemids can work well as sources of custom scaffold DNA. However, scaffolds derived from phages require inclusion of multi-kilobase DNA sequences in order to grow in host bacteria, and those sequences cannot be altered or removed. These fixed-sequence regions constrain the design possibilities of DNA origami. Here, we report the construction of a novel phagemid, pScaf, to produce scaffolds that have a custom sequence with a much smaller fixed region of 393 bases. We used pScaf to generate new scaffolds ranging in size from 1512 to 10 080 bases and demonstrated their use in various DNA origami shapes and assemblies. We anticipate our pScaf phagemid will enhance development of the DNA origami method and its future applications.

15.
Nucleic Acids Res ; 31(11): 2833-8, 2003 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-12771210

RESUMO

We present version 2 of the SPINE system for structural proteomics. SPINE is available over the web at http://nesg.org. It serves as the central hub for the Northeast Structural Genomics Consortium, allowing collaborative structural proteomics to be carried out in a distributed fashion. The core of SPINE is a laboratory information management system (LIMS) for key bits of information related to the progress of the consortium in cloning, expressing and purifying proteins and then solving their structures by NMR or X-ray crystallography. Originally, SPINE focused on tracking constructs, but, in its current form, it is able to track target sample tubes and store detailed sample histories. The core database comprises a set of standard relational tables and a data dictionary that form an initial ontology for proteomic properties and provide a framework for large-scale data mining. Moreover, SPINE sits at the center of a federation of interoperable information resources. These can be divided into (i) local resources closely coupled with SPINE that enable it to handle less standardized information (e.g. integrated mailing and publication lists), (ii) other information resources in the NESG consortium that are inter-linked with SPINE (e.g. crystallization LIMS local to particular laboratories) and (iii) international archival resources that SPINE links to and passes on information to (e.g. TargetDB at the PDB).


Assuntos
Bases de Dados de Proteínas , Proteínas/química , Proteômica , Comportamento Cooperativo , Sistemas de Gerenciamento de Base de Dados , Internet , Proteínas/genética , Proteínas/isolamento & purificação , Proteínas/metabolismo , Software , Integração de Sistemas
16.
Methods Enzymol ; 394: 210-43, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15808222

RESUMO

In this chapter we describe the core Protein Production Platform of the Northeast Structural Genomics Consortium (NESG) and outline the strategies used for producing high-quality protein samples using Escherichia coli host vectors. The platform is centered on 6X-His affinity-tagged protein constructs, allowing for a similar purification procedure for most targets, and the implementation of high-throughput parallel methods. In most cases, these affinity-purified proteins are sufficiently homogeneous that a single subsequent gel filtration chromatography step is adequate to produce protein preparations that are greater than 98% pure. Using this platform, over 1000 different proteins have been cloned, expressed, and purified in tens of milligram quantities over the last 36-month period (see Summary Statistics for All Targets, ). Our experience using a hierarchical multiplex expression and purification strategy, also described in this chapter, has allowed us to achieve success in producing not only protein samples but also many three-dimensional structures. As of December 2004, the NESG Consortium has deposited over 145 new protein structures to the Protein Data Bank (PDB); about two-thirds of these protein samples were produced by the NESG Protein Production Facility described here. The methods described here have proven effective in producing quality samples of both eukaryotic and prokaryotic proteins. These improved robotic and?or parallel cloning, expression, protein production, and biophysical screening technologies will be of broad value to the structural biology, functional proteomics, and structural genomics communities.


Assuntos
Clonagem Molecular/métodos , Robótica/métodos , Software , Cromatografia em Gel , Biologia Computacional/métodos , Espectroscopia de Ressonância Magnética , Biossíntese de Proteínas , Proteínas/genética , Proteínas/isolamento & purificação
17.
J Mol Biol ; 336(1): 115-30, 2004 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-14741208

RESUMO

Structural genomics projects represent major undertakings that will change our understanding of proteins. They generate unique datasets that, for the first time, present a standardized view of proteins in terms of their physical and chemical properties. By analyzing these datasets here, we are able to discover correlations between a protein's characteristics and its progress through each stage of the structural genomics pipeline, from cloning, expression, purification, and ultimately to structural determination. First, we use tree-based analyses (decision trees and random forest algorithms) to discover the most significant protein features that influence a protein's amenability to high-throughput experimentation. Based on this, we identify potential bottlenecks in various stages of the structural genomics process through specialized "pipeline schematics". We find that the properties of a protein that are most significant are: (i.) whether it is conserved across many organisms; (ii). the percentage composition of charged residues; (iii). the occurrence of hydrophobic patches; (iv). the number of binding partners it has; and (v). its length. Conversely, a number of other properties that might have been thought to be important, such as nuclear localization signals, are not significant. Thus, using our tree-based analyses, we are able to identify combinations of features that best differentiate the small group of proteins for which a structure has been determined from all the currently selected targets. This information may prove useful in optimizing high-throughput experimentation. Further information is available from http://mining.nesg.org/.


Assuntos
Genômica , Conformação Proteica , Proteínas/química , Proteínas/genética , Algoritmos , Biologia Computacional , Bases de Dados de Proteínas , Árvores de Decisões , Sinais Direcionadores de Proteínas , Análise de Sequência de Proteína
20.
Science ; 355(6331): 1261-1262, 2017 03 24.
Artigo em Inglês | MEDLINE | ID: mdl-28336623
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA