RESUMO
TOR complex 1 (TORC1) is a potent anabolic regulator of cellular growth and metabolism. When cells have sufficient amino acids, TORC1 is active due to its lysosomal localization mediated via the Rag GTPases. Upon amino acid removal, the Rag GTPases release TORC1, causing it to become cytoplasmic and inactive. We show here that, upon amino acid removal, the Rag GTPases also recruit TSC2 to the lysosome, where it can act on Rheb. Only when both the Rag GTPases and Rheb are inactive is TORC1 fully released from the lysosome. Upon amino acid withdrawal, cells lacking TSC2 fail to completely release TORC1 from the lysosome, fail to completely inactivate TORC1, and fail to adjust physiologically to amino acid starvation. These data suggest that regulation of TSC2 subcellular localization may be a general mechanism to control its activity and place TSC2 in the amino-acid-sensing pathway to TORC1.
Assuntos
Aminoácidos/metabolismo , Lisossomos/metabolismo , Complexos Multiproteicos/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo , Proteínas Supressoras de Tumor/metabolismo , Células HeLa , Humanos , Insulina/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Neuropeptídeos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Prenilação , Proteína Enriquecida em Homólogo de Ras do Encéfalo , Proteína 2 do Complexo Esclerose TuberosaRESUMO
During canonical Wnt signalling, the activity of nuclear ß-catenin is largely mediated by the TCF/LEF family of transcription factors. To challenge this view, we used the CRISPR/Cas9 genome editing approach to generate HEK 293T cell clones lacking all four TCF/LEF genes. By performing unbiased whole transcriptome sequencing analysis, we found that a subset of ß-catenin transcriptional targets did not require TCF/LEF factors for their regulation. Consistent with this finding, we observed in a genome-wide analysis that ß-catenin occupied specific genomic regions in the absence of TCF/LEF Finally, we revealed the existence of a transcriptional activity of ß-catenin that specifically appears when TCF/LEF factors are absent, and refer to this as ß-catenin-GHOST response. Collectively, this study uncovers a previously neglected modus operandi of ß-catenin that bypasses the TCF/LEF transcription factors.
Assuntos
Perfilação da Expressão Gênica/métodos , Fatores de Transcrição TCF/genética , Transcrição Gênica , beta Catenina/metabolismo , Sistemas CRISPR-Cas , Edição de Genes , Regulação da Expressão Gênica , Células HEK293 , Humanos , Fatores de Transcrição TCF/metabolismo , Sequenciamento do Exoma/métodos , Via de Sinalização WntRESUMO
In the Mediterranean Sea, where biological invasions constitute a serious threat, the combination of citizen science and social networks amplified the power of proper field studies, recording species that would have otherwise presumably passed unnoticed. Based on data collected on several Facebook groups, we hereby first report the presence of five fish taxa (Kyphosus sp., Heniochus intermedius, Pomacanthus imperator, Pomacanthus maculosus and Abudefduf sp.) new for the Mediterranean Egypt, revise their distribution in the Mediterranean Sea and discuss their possible introduction pathways. Finally, we provide some considerations on the potentiality of social media for citizen science projects.
Assuntos
Perciformes , Mídias Sociais , Animais , Egito , Peixes , Mar MediterrâneoRESUMO
The molecular mechanisms regulating tissue size represent an unsolved puzzle in developmental biology. One signalling pathway controlling growth of the Drosophila wing is Dpp. Dpp promotes growth by repression of the transcription factor Brk. The transcriptional targets of Brk that control cell growth and proliferation, however, are not yet fully elucidated. We report here a genome-wide ChIP-Seq of endogenous Brk from wing imaginal discs. We identify the growth regulator Myc as a target of Brk and show that repression of Myc and of the miRNA bantam explains a significant fraction of the growth inhibition caused by Brk. This work sheds light on the effector mechanisms by which Dpp signalling controls tissue growth.
Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Drosophila/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Proteínas Repressoras/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Asas de Animais/crescimento & desenvolvimento , Animais , Proteínas de Ligação a DNA/genética , Regulação para Baixo , Drosophila/genética , Drosophila/crescimento & desenvolvimento , Drosophila/metabolismo , Proteínas de Drosophila/genética , Genoma de Inseto/genética , Discos Imaginais/crescimento & desenvolvimento , Discos Imaginais/metabolismo , MicroRNAs/metabolismo , Proteínas Repressoras/genética , Fatores de Transcrição/genética , Asas de Animais/metabolismoRESUMO
BACKGROUND: Wnt6 is an evolutionarily ancient member of the Wnt family. In Drosophila, Wnt6 loss-of-function animals have not yet been reported, hence information about fly Wnt6 function is lacking. In wing discs, Wnt6 is expressed at the dorsal/ventral boundary in a pattern similar to that of wingless, an important regulator of wing size. To test whether Wnt6 also contributes towards wing size regulation, we generated Wnt6 knockout flies. RESULTS: Wnt6 knockout flies are viable and have no obvious defect in wing size or planar cell polarity. Surprisingly, Wnt6 knockouts lack maxillary palps. Interestingly, Wnt6 is absent from the genome of hemipterans, correlating with the absence of maxillary palps in these insects. CONCLUSIONS: Wnt6 is important for maxillary palp development in Drosophila, and phylogenetic analysis indicates that loss of Wnt6 may also have led to loss of maxillary palps on an evolutionary time scale.
Assuntos
Proteínas de Drosophila/metabolismo , Drosophila/embriologia , Drosophila/genética , Seio Maxilar/embriologia , Proteínas Wnt/metabolismo , Animais , Proteínas de Drosophila/genética , Evolução Molecular , Regulação da Expressão Gênica no Desenvolvimento , Técnicas de Inativação de Genes , Filogenia , Transdução de Sinais , Asas de Animais/anatomia & histologia , Proteínas Wnt/genéticaRESUMO
The monitoring of contaminants in fish species is pivotal for fishes' health and reproduction, as well as for human health. In the specific work, three major categories of contaminants, pesticides, pharmaceuticals, and macro and trace elements, were investigated in two major fish species, Dicentrarchus labrax and Solea solea, collected from Thermaikos Gulf, in Greece. To achieve this goal, three analytical methods using LC-MS/MS, GC-MS/MS, and ICP-MS were developed, validated, and applied to the collected fish samples. The results indicated a very low prevalence of caffeine and acetaminophen, both not exceeding 3.8 µg/kg fish. Similarly, thiabendazole, cypermethrin, and tricyclazole (pesticides) were found in a concentration range of 0.9 to 13.7 µg/kg fish, while in one D. labrax sample, traces of the metabolite of organochlorine pesticide DDT, o,p'-DDE were detected. Al, Mn, Fe, Zn, and Sr were the predominant trace elements in a concentration range of 500-20,000 µg/kg fish. Macro elements levels varied from 280 to 5405 mg/kg fish. Health risk assessment did not unveil an unacceptable risk for the human health of adults, apart from one sample presenting Hg above the regulatory levels. On the contrary, for children, the calculated hazard quotient values for Hg in all cases and for two As detections were higher than the threshold value of 1, indicating a potential risk.
RESUMO
Here, we present a protocol for collecting high-spatiotemporal-resolution datasets of undisturbed mouse embryonic epithelial rudiments using light-sheet fluorescence microscopy. We describe steps for rudiment dissection, clearing, and embedding for cleared and live imaging. We then detail procedures for light-sheet imaging followed by image processing and morphometric analysis. We provide protocol variations for imaging both growing and optically cleared lung explants to encourage the quantitative exploration of three-dimensional cell shapes, cell organization, and complex cell-cell dynamics. For complete details on the use and execution of this protocol, please refer to Gómez et al. (2021).1.
RESUMO
During kidney development, reciprocal signaling between the epithelium and the mesenchyme coordinates nephrogenesis with branching morphogenesis of the collecting ducts. The mechanism that positions the renal vesicles, and thus the nephrons, relative to the branching ureteric buds has remained elusive. By combining computational modeling and experiments, we show that geometric effects concentrate the key regulator, WNT9b, at the junctions between parent and daughter branches where renal vesicles emerge, even when uniformly expressed in the ureteric epithelium. This curvature effect might be a general paradigm to create non-uniform signaling in development.
Assuntos
Néfrons , Ureter , Rim , Transdução de Sinais , Epitélio , Morfogênese , MesodermaRESUMO
Trace elements have the potential to bioaccumulate in marine organisms and to biomagnify towards the upper levels of marine trophic webs, resulting in a range of negative effects on organisms. Elasmobranchs are highly susceptible to bioaccumulation of trace metals, while their consumption by humans is increasing worldwide. Therefore, it is important to monitor the trace metal content in the edible tissues of elasmobranchs. This work reveals the content of 12 trace metals in the edible tissues of 10 elasmobranch species caught in Greek waters. Levels above the permissible limits for Hg and Pb were found in some species, while analysis of the lifetime consumption risk for adults and children using the Target Hazard Quotient (THQ), revealed a high risk for two of the most toxic substances on the priority list for substances, namely As and Hg. These are preliminary results, and further research is required to understand better the issue.
Assuntos
Elasmobrânquios , Mercúrio , Metais Pesados , Oligoelementos , Poluentes Químicos da Água , Animais , Criança , Adulto , Humanos , Oligoelementos/análise , Metais Pesados/análise , Medição de Risco , Mercúrio/análise , Monitoramento Ambiental/métodos , Poluentes Químicos da Água/análise , Mar MediterrâneoRESUMO
Mouse embryonic stem cells (mESCs) can be maintained in vitro in defined N2B27 medium supplemented with two chemical inhibitors for GSK3 and MEK (2i) and the cytokine leukemia inhibitory factor (LIF), which act synergistically to promote self-renewal and pluripotency. Here, we find that genetic deletion of the four genes encoding the TCF/LEF transcription factors confers mESCs with the ability to self-renew in N2B27 medium alone. TCF/LEF quadruple knockout (qKO) mESCs display dysregulation of several genes, including Aire, Dnmt3l, and IcosL, located adjacent to each other within a topologically associated domain (TAD). Aire, Dnmt3l, and IcosL appear to be regulated by TCF/LEF in a ß-catenin independent manner. Moreover, downregulation of Aire and Dnmt3l in wild-type mESCs mimics the loss of TCF/LEF and increases mESC survival in the absence of 2iL. Hence, this study identifies TCF/LEF effectors that mediate exit from the pluripotent state.
Assuntos
Autorrenovação Celular , Fator 1-alfa Nuclear de Hepatócito/genética , Fator 1 de Ligação ao Facilitador Linfoide/genética , Proteína 1 Semelhante ao Fator 7 de Transcrição/genética , Proteína 2 Semelhante ao Fator 7 de Transcrição/genética , Animais , Benzamidas/farmacologia , Autorrenovação Celular/efeitos dos fármacos , Meios de Cultura/química , Meios de Cultura/farmacologia , DNA (Citosina-5-)-Metiltransferases/antagonistas & inibidores , DNA (Citosina-5-)-Metiltransferases/genética , DNA (Citosina-5-)-Metiltransferases/metabolismo , Difenilamina/análogos & derivados , Difenilamina/farmacologia , Regulação para Baixo/efeitos dos fármacos , Edição de Genes , Fator 1-alfa Nuclear de Hepatócito/deficiência , Fator 1-alfa Nuclear de Hepatócito/metabolismo , Ligante Coestimulador de Linfócitos T Induzíveis/antagonistas & inibidores , Ligante Coestimulador de Linfócitos T Induzíveis/genética , Ligante Coestimulador de Linfócitos T Induzíveis/metabolismo , Fator 1 de Ligação ao Facilitador Linfoide/deficiência , Fator 1 de Ligação ao Facilitador Linfoide/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Células-Tronco Embrionárias Murinas/metabolismo , Fator 3 de Transcrição de Octâmero/genética , Fator 3 de Transcrição de Octâmero/metabolismo , Piridinas/farmacologia , Pirimidinas/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína 1 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 1 Semelhante ao Fator 7 de Transcrição/metabolismo , Proteína 2 Semelhante ao Fator 7 de Transcrição/deficiência , Proteína 2 Semelhante ao Fator 7 de Transcrição/metabolismo , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , beta Catenina/deficiência , beta Catenina/genética , Proteína AIRERESUMO
We lack a holistic understanding of the genetic programs orchestrating embryonic colon morphogenesis and governing damage response in the adult. A window into these programs is the transcriptomes of the epithelial and mesenchymal cell populations in the colon. Performing unbiased single-cell transcriptomic analyses of the developing mouse colon at different embryonic stages (embryonic day 14.5 [E14.5], E15.5, and E18.5), we capture cellular and molecular profiles of the stages before, during, and after the appearance of crypt structures, as well as in a model of adult colitis. The data suggest most adult lineages are established by E18.5. We find embryonic-specific gene expression profiles and cell populations that reappear in response to tissue damage. Comparison of the datasets from mice and human colitis suggests the processes are conserved. In this study, we provide a comprehensive single-cell atlas of the developing mouse colon and evidence for the reactivation of embryonic genes in disease.
Assuntos
Colo/embriologia , Colo/patologia , Perfilação da Expressão Gênica , Animais , Diferenciação Celular , Colite/genética , Modelos Animais de Doenças , Embrião de Mamíferos/metabolismo , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Doenças Inflamatórias Intestinais/genética , Doenças Inflamatórias Intestinais/patologia , Mucosa Intestinal/embriologia , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Mesoderma/embriologia , Camundongos Endogâmicos C57BL , Análise de Célula ÚnicaRESUMO
BCL9 and PYGO are ß-catenin cofactors that enhance the transcription of Wnt target genes. They have been proposed as therapeutic targets to diminish Wnt signaling output in intestinal malignancies. Here we find that, in colorectal cancer cells and in developing mouse forelimbs, BCL9 proteins sustain the action of ß-catenin in a largely PYGO-independent manner. Our genetic analyses implied that BCL9 necessitates other interaction partners in mediating its transcriptional output. We identified the transcription factor TBX3 as a candidate tissue-specific member of the ß-catenin transcriptional complex. In developing forelimbs, both TBX3 and BCL9 occupy a large number of Wnt-responsive regulatory elements, genome-wide. Moreover, mutations in Bcl9 affect the expression of TBX3 targets in vivo, and modulation of TBX3 abundance impacts on Wnt target genes transcription in a ß-catenin- and TCF/LEF-dependent manner. Finally, TBX3 overexpression exacerbates the metastatic potential of Wnt-dependent human colorectal cancer cells. Our work implicates TBX3 as context-dependent component of the Wnt/ß-catenin-dependent transcriptional complex.