RESUMO
BACKGROUND AND AIM: Coronary artery calcification (CAC) partially explains the excess cardiovascular morbidity and mortality after kidney transplantation. This study aimed to investigate determinants of CAC in stable kidney transplant recipients at 12 months post-transplantation. METHODS AND RESULTS: CAC-score was quantified by the Agatston method using non-contrast enhanced computed tomography, and age- and sex-standardized CAC-percentiles were calculated. Univariable and multivariable multinomial logistic regression was performed to study potential determinants of CAC. The independent determinants were included in multivariable multinomial logistic regression adjusting for potential confounders. 203 KTRs (age 54.0 ± 14.7 years, 61.1% male) were included. Participants were categorized into four groups according to CAC percentiles (p = 0 [CAC-score = 0], n = 68; p ≥ 1%-p ≤ 50% [CAC score = 29.0 (4.0-166.0)], n = 31; p > 50 ≤ 75% [CAC score = 101.0 (23.8-348.3)], n = 26; and p>75% [CAC score = 581.0 (148.0-1652)], n = 83). Upon multivariable multinomial logistic regression, patients with a narrower phase angle and patients who had received a graft from a deceased donor had a higher risk of being in the >75th CAC-percentile. CONCLUSIONS: This study identifies not only metabolic and transplant-related factors, but also phase angle, a composite marker of cell integrity, as an independent determinant of CAC at 12 months after kidney transplantation. This study offers new perspectives for future research into the value of bioelectrical impedance analysis in relation to vascular calcification in kidney transplant recipients.