Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biomolecules ; 13(1)2023 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-36671533

RESUMO

For various reasons, leaves are occasionally lyophilized prior to storage at -80 °C and preparing extracts. Soluble carbohydrate identity and quantity from maize leaf disks were ascertained in two separate years using anion exchange HPLC with pulsed electrochemical detection. Analyses were made from disks after freezing in liquid nitrogen with or without subsequent lyophilization (both years) or directly after removal from plants with or without lyophilization (only in the second year). By adding the lyophilizing step, galactose content consistently increased and, frequently, so did galactoglycerols. The source of the galactose increase with the added lyophilizing step was not due to metabolizing raffinose, as the raffinose synthase (rafs) null mutant leaves, which do not make that trisaccharide, also had a similar increase in galactose content with lyophilization. Apparently, the ester linkages attaching free fatty acids to galactoglycerolipids of the chloroplast are particularly sensitive to cleavage during lyophilization, resulting in increases in galactoglycerols. Regardless of the galactose source, a systematic error is introduced for carbohydrate (and, most likely, also chloroplast mono- or digalactosyldiacylglycerol) amounts when maize leaf samples are lyophilized prior to extraction. The recognition of lyophilization as a source of galactose increase provides a cautionary note for investigators of soluble carbohydrates.


Assuntos
Galactose , Zea mays , Congelamento , Liofilização/métodos , Folhas de Planta
2.
Plant J ; 67(5): 929-40, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21595760

RESUMO

SYMRK is a leucine-rich-repeat (LRR)-receptor kinase that mediates intracellular symbioses of legumes with rhizobia and arbuscular mycorrhizal fungi. It participates in signalling events that lead to epidermal calcium spiking, an early cellular response that is typically considered as central for intracellular accommodation and nodule organogenesis. Here, we describe the Lotus japonicus symRK-14 mutation that alters a conserved GDPC amino-acid sequence in the SYMRK extracellular domain. Normal infection of the epidermis by fungal or bacterial symbionts was aborted in symRK-14. Likewise, epidermal responses of symRK-14 to bacterial signalling, including calcium spiking, NIN gene expression and infection thread formation, were significantly reduced. In contrast, no major negative effects on the formation of nodule primordia and cortical infection were detected. Cumulatively, our data show that the symRK-14 mutation uncouples the epidermal and cortical symbiotic program, while indicating that the SYMRK extracellular domain participates in transduction of non-equivalent signalling events. The GDPC sequence was found to be highly conserved in LRR-receptor kinases in legumes and non-legumes, including the evolutionarily distant bryophytes. Conservation of the GDPC sequence in nearly one-fourth of LRR-receptor-like kinases in the genome of Arabidopsis thaliana suggests, however, that this sequence might also play an important non-symbiotic function in this plant.


Assuntos
Sinalização do Cálcio/genética , Lotus/fisiologia , Micorrizas/fisiologia , Proteínas de Plantas/genética , Rhizobium/fisiologia , Simbiose/genética , Alelos , Motivos de Aminoácidos , Sequência de Aminoácidos , Cálcio/metabolismo , Sequência Conservada , Regulação da Expressão Gênica de Plantas , Glomeromycota/fisiologia , Glomeromycota/ultraestrutura , Lotus/genética , Lotus/microbiologia , Lotus/ultraestrutura , Dados de Sequência Molecular , Mutação , Micorrizas/ultraestrutura , Fenótipo , Epiderme Vegetal/genética , Epiderme Vegetal/microbiologia , Epiderme Vegetal/fisiologia , Epiderme Vegetal/ultraestrutura , Proteínas de Plantas/metabolismo , Nodulação/fisiologia , Raízes de Plantas/genética , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia , Raízes de Plantas/ultraestrutura , Proteínas Quinases/genética , Proteínas Quinases/metabolismo , Rhizobium/ultraestrutura , Plântula/genética , Plântula/microbiologia , Plântula/fisiologia , Plântula/ultraestrutura , Alinhamento de Sequência
3.
Nature ; 441(7097): 1153-6, 2006 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-16810257

RESUMO

Induced development of a new plant organ in response to rhizobia is the most prominent manifestation of legume root-nodule symbiosis with nitrogen-fixing bacteria. Here we show that the complex root-nodule organogenic programme can be genetically deregulated to trigger de novo nodule formation in the absence of rhizobia or exogenous rhizobial signals. In an ethylmethane sulphonate-induced snf1 (spontaneous nodule formation) mutant of Lotus japonicus, a single amino-acid replacement in a Ca2+/calmodulin-dependent protein kinase (CCaMK) is sufficient to turn fully differentiated root cortical cells into meristematic founder cells of root nodule primordia. These spontaneous nodules are genuine nodules with an ontogeny similar to that of rhizobial-induced root nodules, corroborating previous physiological studies. Using two receptor-deficient genetic backgrounds we provide evidence for a developmentally integrated spontaneous nodulation process that is independent of lipochitin-oligosaccharide signal perception and oscillations in Ca2+ second messenger levels. Our results reveal a key regulatory position of CCaMK upstream of all components required for cell-cycle activation, and a phenotypically divergent series of mutant alleles demonstrates positive and negative regulation of the process.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Lotus/enzimologia , Lotus/fisiologia , Fixação de Nitrogênio/fisiologia , Sequência de Aminoácidos , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina/química , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Genes de Plantas/genética , Teste de Complementação Genética , Lotus/citologia , Lotus/genética , Dados de Sequência Molecular , Mutação/genética , Fenótipo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raízes de Plantas/citologia , Raízes de Plantas/metabolismo , Raízes de Plantas/microbiologia , Raízes de Plantas/fisiologia
4.
Int J Mol Sci ; 13(6): 6582-6603, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22837651

RESUMO

Arabidopsis thaliana seeds without functional SEED MATURATION PROTEIN1 (SMP1), a boiling soluble protein predicted to be of intrinsic disorder, presumed to be a LATE EMBRYOGENESIS ABUNDANT (LEA) family protein based on sequence homology, do not enter secondary dormancy after 3 days at 40 °C. We hypothesized that SMP1 may protect a heat labile protein involved in the promotion of secondary dormancy. Recombinant SMP1 and GmPM28, its soybean (Glycine max), LEA4 homologue, protected the labile GLUCOSE-6-PHOSPHATE DEHYROGENASE enzyme from heat stress, as did a known protectant, Bovine Serum Albumin, whether the LEA protein was in solution or attached to the bottom of microtiter plates. Maintenance of a biological function for both recombinant LEA proteins when immobilized encouraged a biopanning approach to screen for potential protein interactors. Phage display with two Arabidopsis seed, T7 phage, cDNA libraries, normalized for transcripts present in the mature, dehydrated, 12-, 24-, or 36-h imbibed seeds, were used in biopans against recombinant SMP1 and GmPM28. Phage titer increased considerably over four rounds of biopanning for both LEA proteins, but not for BSA, at both 25 and at 41 °C, regardless of the library used. The prevalence of multiple, independent clones encoding portions of specific proteins repeatedly retrieved from different libraries, temperatures and baits, provides evidence suggesting these LEA proteins are discriminating which proteins they protect, a novel finding. The identification of putative LEA-interacting proteins provides targets for reverse genetic approaches to further dissect the induction of secondary dormancy in seeds in response to heat stress.


Assuntos
Resposta ao Choque Térmico , Biblioteca de Peptídeos , Dormência de Plantas , Proteínas de Plantas/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bovinos , Clonagem Molecular , DNA Bacteriano/genética , DNA Complementar/genética , Escherichia coli/metabolismo , Glucosefosfato Desidrogenase/metabolismo , Temperatura Alta , Ligação Proteica , Fatores de Processamento de RNA , Proteínas Recombinantes/metabolismo , Albumina Sérica/química , Glycine max/metabolismo , Fatores de Transcrição/metabolismo
5.
Plants (Basel) ; 9(7)2020 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-32610443

RESUMO

The intrinsically disordered proteins belonging to the LATE EMBRYOGENESIS ABUNDANT protein (LEAP) family have been ascribed a protective function over an array of intracellular components. We focus on how LEAPs may protect a stress-susceptible proteome. These examples include instances of LEAPs providing a shield molecule function, possibly by instigating liquid-liquid phase separations. Some LEAPs bind directly to their client proteins, exerting a holdase-type chaperonin function. Finally, instances of LEAP-client protein interactions have been documented, where the LEAP modulates (interferes with) the function of the client protein, acting as a surreptitious rheostat of cellular homeostasis. From the examples identified to date, it is apparent that client protein modulation also serves to mitigate stress. While some LEAPs can physically bind and protect client proteins, some apparently bind to assist the degradation of the client proteins with which they associate. Documented instances of LEAP-client protein binding, even in the absence of stress, brings to the fore the necessity of identifying how the LEAPs are degraded post-stress to render them innocuous, a first step in understanding how the cell regulates their abundance.

6.
Gigascience ; 2(1): 2, 2013 Feb 12.
Artigo em Inglês | MEDLINE | ID: mdl-23587306

RESUMO

Ash dieback is a devastating fungal disease of ash trees that has swept across Europe and recently reached the UK. This emergent pathogen has received little study in the past and its effect threatens to overwhelm the ash population. In response to this we have produced some initial genomics datasets and taken the unusual step of releasing them to the scientific community for analysis without first performing our own. In this manner we hope to 'crowdsource' analyses and bring the expertise of the community to bear on this problem as quickly as possible. Our data has been released through our website at oadb.tsl.ac.uk and a public GitHub repository.

7.
Adv Microb Physiol ; 58: 23-80, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21722791

RESUMO

Many bacteria use 'quorum sensing' (QS) as a mechanism to regulate gene induction in a population-dependent manner. In its simplest sense this involves the accumulation of a signaling metabolite during growth; the binding of this metabolite to a regulator or multiple regulators activates induction or repression of gene expression. However QS regulation is seldom this simple, because other inputs are usually involved. In this review we have focussed on how those other inputs influence QS regulation and as implied by the title, this often occurs by environmental or physiological effects regulating the expression or activity of the QS regulators. The rationale of this review is to briefly introduce the main QS signals used in Gram-negative bacteria and then introduce one of the earliest understood mechanisms of regulation of the regulator, namely the plant-mediated control of expression of the TraR QS regulator in Agrobacterium tumefaciens. We then describe how in several species, multiple QS regulatory systems can act as integrated hierarchical regulatory networks and usually this involves the regulation of QS regulators. Such networks can be influenced by many different physiological and environmental inputs and we describe diverse examples of these. In the final section, we describe different examples of how eukaryotes can influence QS regulation in Gram-negative bacteria.


Assuntos
Bactérias Gram-Negativas/genética , Bactérias Gram-Negativas/metabolismo , Percepção de Quorum/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Regulação Bacteriana da Expressão Gênica , Genes Bacterianos , Homosserina/análogos & derivados , Homosserina/genética , Homosserina/metabolismo , Lactonas/metabolismo , Plasmídeos , Fator sigma/genética , Fator sigma/metabolismo , Transdução de Sinais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA