Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Neuroinflammation ; 15(1): 32, 2018 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-29394934

RESUMO

BACKGROUND: The endoplasmic reticulum (ER) is responsible for the control of correct protein folding and protein function which is crucial for cell survival. However, under pathological conditions, such as hypoxia-ischemia (HI), there is an accumulation of unfolded proteins thereby triggering the unfolded protein response (UPR) and causing ER stress which is associated with activation of several stress sensor signaling pathways, one of them being the inositol requiring enzyme-1 alpha (IRE1α) signaling pathway. The UPR is regarded as a potential contributor to neuronal cell death and inflammation after HI. In the present study, we sought to investigate whether microRNA-17 (miR-17), a potential IRE1α ribonuclease (RNase) substrate, arbitrates downregulation of thioredoxin-interacting protein (TXNIP) and consequent NLRP3 inflammasome activation in the immature brain after HI injury and whether inhibition of IRE1α may attenuate inflammation via miR-17/TXNIP regulation. METHODS: Postnatal day 10 rat pups (n = 287) were subjected to unilateral carotid artery ligation followed by 2.5 h of hypoxia (8% O2). STF-083010, an IRE1α RNase inhibitor, was intranasally delivered at 1 h post-HI or followed by an additional one administration per day for 2 days. MiR-17-5p mimic or anti-miR-17-5p inhibitor was injected intracerebroventricularly at 48 h before HI. Infarct volume and body weight were used to evaluate the short-term effects while brain weight, gross and microscopic brain tissue morphologies, and neurobehavioral tests were conducted for the long-term evaluation. Western blots, immunofluorescence staining, reverse transcription quantitative real-time polymerase chain reaction (RT-qPCR), and co-immunoprecipitation (Co-IP) were used for mechanism studies. RESULTS: Endogenous phosphorylated IRE1α expression was significantly increased after HI. Intranasal administration of STF-083010 alleviated brain injury and improved neurological behavior. MiR-17-5p expression was reduced after HI, and this decrease was attenuated by STF-083010 treatment. MiR-17-5p mimic administration ameliorated TXNIP expression, NLRP3 inflammasome activation, caspase-1 cleavage, and IL-1ß production, as well as brain infarct volume. Conversely, anti-miR-17-5p inhibitor reversed IRE1α inhibition-induced decrease in TXNIP expression and inflammasome activation, as well as exacerbated brain injury after HI. CONCLUSIONS: IRE1a-induced UPR pathway may contribute to inflammatory activation and brain injury following neonatal HI. IRE1a activation, through decay of miR-17-5p, elevated TXNIP expression to activate NLRP3 inflammasome and aggravated brain damage.


Assuntos
Proteínas de Transporte/metabolismo , Endorribonucleases/antagonistas & inibidores , Endorribonucleases/biossíntese , Hipóxia-Isquemia Encefálica/metabolismo , MicroRNAs/metabolismo , Complexos Multienzimáticos/antagonistas & inibidores , Complexos Multienzimáticos/biossíntese , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/biossíntese , Administração Intranasal , Animais , Animais Recém-Nascidos , Proteínas de Transporte/antagonistas & inibidores , Proteínas de Ciclo Celular , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Inflamassomos/antagonistas & inibidores , Inflamassomos/metabolismo , Proteína 3 que Contém Domínio de Pirina da Família NLR/antagonistas & inibidores , Ratos , Ratos Sprague-Dawley , Sulfonamidas/administração & dosagem , Tiofenos/administração & dosagem
2.
Neurobiol Dis ; 69: 192-9, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24874543

RESUMO

OBJECTIVES: Neonatal hypoxia ischemia (HI) is an injury that can lead to neurological impairments such as behavioral and learning disabilities. Granulocyte-colony stimulating factor (G-CSF) has been demonstrated to be neuroprotective in ischemic stroke however it has also been shown to induce neutrophilia, ultimately exacerbating neuronal injury. Our hypothesis is that coadministration of anti-neutrophil antibody (Ab) with G-CSF will decrease blood neutrophil counts thereby reducing infarct volume and improving neurological function post HI brain injury. METHODS: Rat pups were subjected to unilateral carotid artery ligation followed by 2.5h of hypoxia. Animals were randomly assigned to five groups: Sham (n=15), vehicle (HI, n=15), HI with G-CSF treatment (n=15), HI with G-CSF+Ab treatment (n=15), and HI with Ab treatment (n=15). Ab (325µg/kg) was administered intraperitoneally while G-CSF (50µg/kg) was administered subcutaneously 1h post HI followed by daily injections for 3 consecutive days. Animals were euthanized at 96h post HI for blood neutrophil counts and brain infarct volume measurements as well as at 5weeks for neurological function testing and brain weight measurements. Lung and spleen weights at both time points were further analyzed. RESULTS: The G-CSF treatment group showed tendencies to reduce infarct volume and improve neurological function while significantly increasing neutrophil counts. On the other hand, the G-CSF+Ab group significantly reduced infarct volume, improved neurological function and decreased neutrophil counts. The Ab alone group showed reversal of the neuroprotective effects of the G-CSF+Ab group. No significant differences were found in peripheral organ weights between groups. CONCLUSION: Our data suggest that coadministration of G-CSF with Ab not only prevented brain atrophy but also significantly improved neurological function by decreasing blood neutrophil counts. Hence the neuroprotective effects of G-CSF may be further enhanced if neutrophilia is avoided.


Assuntos
Anticorpos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos/administração & dosagem , Hipóxia-Isquemia Encefálica/sangue , Hipóxia-Isquemia Encefálica/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Neutrófilos/imunologia , Neutrófilos/fisiologia , Animais , Animais Recém-Nascidos , Atrofia , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Terapia Combinada , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/patologia , Contagem de Leucócitos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Distribuição Aleatória , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Índice de Gravidade de Doença , Baço/efeitos dos fármacos , Baço/patologia
3.
PLoS One ; 9(2): e90258, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24587303

RESUMO

OBJECTIVE: Remote Ischemic Postconditioning (RIPC) is a promising therapeutic intervention wherein a sub-lethal ischemic insult induced in one organ (limb) improves ischemia in an organ distant to it (brain). The main objective of this study was to investigate the long-term functional effects of delayed RIPC in a neonatal hypoxia-ischemia (HI) rat model. METHOD: 10 day old rat pups were subjected to delayed RIPC treatment and randomized into four groups: 1) Sham, 2) HI induced, 3) HI +24 hr delayed RIPC, and 4) HI +24 hr delayed RIPC with three consecutive daily treatments. Neurobehavioral tests, brain weights, gross and microscopic brain tissue morphologies, and systemic organ weights were evaluated at five weeks post surgery. RESULTS: HI induced rats performed significantly worse than sham but both groups of delayed RIPC treatment showed improvement of sensory motor functions. Furthermore, compared to the HI induced group, the delayed RIPC treatment groups showed no further detrimental changes on brain tissue, both grossly and morphologically, and no changes on the systemic organ weights. CONCLUSION: Delayed RIPC significantly improves long term sensory motor deficits in a neonatal HI rat model. A 24 hr delayed treatment does not significantly attenuate morphological brain injury but does attenuate sensory motor deficits. Sensory motor deficits improve with both a single treatment and with three consecutive daily treatments, and the consecutive treatments are possibly being more beneficial.


Assuntos
Encéfalo/irrigação sanguínea , Membro Posterior/irrigação sanguínea , Hipóxia-Isquemia Encefálica/terapia , Pós-Condicionamento Isquêmico , Atividade Motora , Recuperação de Função Fisiológica , Animais , Animais Recém-Nascidos , Encéfalo/fisiopatologia , Modelos Animais de Doenças , Hipóxia-Isquemia Encefálica/fisiopatologia , Aprendizagem em Labirinto , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA