Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nat Mater ; 21(2): 160-164, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34811494

RESUMO

Since the discovery of high-temperature superconductivity in copper oxide materials1, there have been sustained efforts to both understand the origins of this phase and discover new cuprate-like superconducting materials2. One prime materials platform has been the rare-earth nickelates and, indeed, superconductivity was recently discovered in the doped compound Nd0.8Sr0.2NiO2 (ref. 3). Undoped NdNiO2 belongs to a series of layered square-planar nickelates with chemical formula Ndn+1NinO2n+2 and is known as the 'infinite-layer' (n = ∞) nickelate. Here we report the synthesis of the quintuple-layer (n = 5) member of this series, Nd6Ni5O12, in which optimal cuprate-like electron filling (d8.8) is achieved without chemical doping. We observe a superconducting transition beginning at ~13 K. Electronic structure calculations, in tandem with magnetoresistive and spectroscopic measurements, suggest that Nd6Ni5O12 interpolates between cuprate-like and infinite-layer nickelate-like behaviour. In engineering a distinct superconducting nickelate, we identify the square-planar nickelates as a new family of superconductors that can be tuned via both doping and dimensionality.


Assuntos
Elétrons , Supercondutividade , Temperatura Alta
2.
Nat Mater ; 19(4): 474, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-31723257

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nat Mater ; 19(2): 153-157, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31685945

RESUMO

Advances in controlling the correlated behaviour of transition metal dichalcogenides have opened a new frontier of many-body physics in two dimensions. A field where these materials have yet to make a deep impact is antiferromagnetic spintronics-a relatively new research direction promising technologies with fast switching times, insensitivity to magnetic perturbations and reduced cross-talk1-3. Here, we present measurements on the intercalated transition metal dichalcogenide Fe1/3NbS2 that exhibits antiferromagnetic ordering below 42 K (refs. 4,5). We find that remarkably low current densities of the order of 104 A cm-2 can reorient the magnetic order, which can be detected through changes in the sample resistance, demonstrating its use as an electronically accessible antiferromagnetic switch. Fe1/3NbS2 is part of a larger family of magnetically intercalated transition metal dichalcogenides, some of which may exhibit switching at room temperature, forming a platform from which to build tuneable antiferromagnetic spintronic devices6,7.

4.
Nat Mater ; 19(9): 1036, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32704158

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

5.
Nat Mater ; 19(10): 1062-1067, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32424369

RESUMO

Nematic order is the breaking of rotational symmetry in the presence of translational invariance. While originally defined in the context of liquid crystals, the concept of nematic order has arisen in crystalline matter with discrete rotational symmetry, most prominently in the tetragonal Fe-based superconductors where the parent state is four-fold symmetric. In this case the nematic director takes on only two directions, and the order parameter in such 'Ising-nematic' systems is a simple scalar. Here, using a spatially resolved optical polarimetry technique, we show that a qualitatively distinct nematic state arises in the triangular lattice antiferromagnet Fe1/3NbS2. The crucial difference is that the nematic order on the triangular lattice is a [Formula: see text] or three-state Potts-nematic order parameter. As a consequence, the anisotropy axes of response functions such as the resistivity tensor can be continuously reoriented by external perturbations. This discovery lays the groundwork for devices that exploit analogies with nematic liquid crystals.

6.
ACS Omega ; 9(37): 39082-39087, 2024 Sep 17.
Artigo em Inglês | MEDLINE | ID: mdl-39310127

RESUMO

Fluoride-ion batteries have several potential advantages over lithium-ion batteries. Materials development is still needed, however, to realize electrolytes with sufficiently high anion conductivity and compatibility with anode and cathode layers. Fluoride compounds are difficult to synthesize directly as single crystals but can be realized from oxide film precursors via topotactic chemistry techniques. Here, we create crystalline alkaline earth bismuth fluoride films BaBiF5 and SrBiF5 through oxide molecular beam epitaxy and topotactic fluorination. We characterize their ionic conductivities and demonstrate their potential as electrolytes. Finally, we realize epitaxial synthesis of BaBiF5 on BaF2 substrates, providing a route to thin film fluoride-ion battery devices.

7.
Nat Commun ; 14(1): 1468, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928184

RESUMO

The layered square-planar nickelates, Ndn+1NinO2n+2, are an appealing system to tune the electronic properties of square-planar nickelates via dimensionality; indeed, superconductivity was recently observed in Nd6Ni5O12 thin films. Here, we investigate the role of epitaxial strain in the competing requirements for the synthesis of the n = 3 Ruddlesden-Popper compound, Nd4Ni3O10, and subsequent reduction to the square-planar phase, Nd4Ni3O8. We synthesize our highest quality Nd4Ni3O10 films under compressive strain on LaAlO3 (001), while Nd4Ni3O10 on NdGaO3 (110) exhibits tensile strain-induced rock salt faults but retains bulk-like transport properties. A high density of extended defects forms in Nd4Ni3O10 on SrTiO3 (001). Films reduced on LaAlO3 become insulating and form compressive strain-induced c-axis canting defects, while Nd4Ni3O8 films on NdGaO3 are metallic. This work provides a pathway to the synthesis of Ndn+1NinO2n+2 thin films and sets limits on the ability to strain engineer these compounds via epitaxy.

8.
Sci Adv ; 7(2)2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33523993

RESUMO

The theory behind the electrical switching of antiferromagnets is premised on the existence of a well-defined broken symmetry state that can be rotated to encode information. A spin glass is, in many ways, the antithesis of this state, characterized by an ergodic landscape of nearly degenerate magnetic configurations, choosing to freeze into a distribution of these in a manner that is seemingly bereft of information. Here, we show that the coexistence of spin glass and antiferromagnetic order allows a novel mechanism to facilitate the switching of the antiferromagnet Fe1/3 + δNbS2, rooted in the electrically stimulated collective winding of the spin glass. The local texture of the spin glass opens an anisotropic channel of interaction that can be used to rotate the equilibrium orientation of the antiferromagnetic state. Manipulating antiferromagnetic spin textures using a spin glass' collective dynamics opens the field of antiferromagnetic spintronics to new material platforms with complex magnetic textures.

9.
Sci Adv ; 5(3): eaat7158, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30838325

RESUMO

Our understanding of correlated electron systems is vexed by the complexity of their interactions. Heavy fermion compounds are archetypal examples of this physics, leading to exotic properties that weave magnetism, superconductivity and strange metal behavior together. The Kondo semimetal CeSb is an unusual example where different channels of interaction not only coexist, but have coincident physical signatures, leading to decades of debate about the microscopic picture describing the interactions between the f moments and the itinerant electron sea. Using angle-resolved photoemission spectroscopy, we resonantly enhance the response of the Ce f electrons across the magnetic transitions of CeSb and find there are two distinct modes of interaction that are simultaneously active, but on different kinds of carriers. This study reveals how correlated systems can reconcile the coexistence of different modes on interaction-by separating their action in momentum space, they allow their coexistence in real space.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA