Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 155
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(25): e2302254120, 2023 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-37307480

RESUMO

During human development, there is a switch in the erythroid compartment at birth that results in silencing of expression of fetal hemoglobin (HbF). Reversal of this silencing has been shown to be effective in overcoming the pathophysiologic defect in sickle cell anemia. Among the many transcription factors and epigenetic effectors that are known to mediate HbF silencing, two of the most potent are BCL11A and MBD2-NuRD. In this report, we present direct evidence that MBD2-NuRD occupies the γ-globin gene promoter in adult erythroid cells and positions a nucleosome there that results in a closed chromatin conformation that prevents binding of the transcriptional activator, NF-Y. We show that the specific isoform, MBD2a, is required for the formation and stable occupancy of this repressor complex that includes BCL11A, MBD2a-NuRD, and the arginine methyltransferase, PRMT5. The methyl cytosine binding preference and the arginine-rich (GR) domain of MBD2a are required for high affinity binding to methylated γ-globin gene proximal promoter DNA sequences. Mutation of the methyl cytosine-binding domain (MBD) of MBD2 results in a variable but consistent loss of γ-globin gene silencing, in support of the importance of promoter methylation. The GR domain of MBD2a is also required for recruitment of PRMT5, which in turn results in placement of the repressive chromatin mark H3K8me2s at the promoter. These findings support a unified model that integrates the respective roles of BCL11A, MBD2a-NuRD, PRMT5, and DNA methylation in HbF silencing.


Assuntos
Hemoglobina Fetal , gama-Globinas , Adulto , Recém-Nascido , Humanos , Genes Reguladores , Fatores de Transcrição , Cromatina , Citosina , Proteína-Arginina N-Metiltransferases , Proteínas de Ligação a DNA
2.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37042725

RESUMO

MOTIVATION: Enrichment analysis is a widely utilized technique in genomic analysis that aims to determine if there is a statistically significant association between two sets of genomic features. To conduct this type of hypothesis testing, an appropriate null model is typically required. However, the null distribution that is commonly used can be overly simplistic and may result in inaccurate conclusions. RESULTS: bootRanges provides fast functions for generation of block bootstrapped genomic ranges representing the null hypothesis in enrichment analysis. As part of a modular workflow, bootRanges offers greater flexibility for computing various test statistics leveraging other Bioconductor packages. We show that shuffling or permutation schemes may result in overly narrow test statistic null distributions and over-estimation of statistical significance, while creating new range sets with a block bootstrap preserves local genomic correlation structure and generates more reliable null distributions. It can also be used in more complex analyses, such as accessing correlations between cis-regulatory elements (CREs) and genes across cell types or providing optimized thresholds, e.g. log fold change (logFC) from differential analysis. AVAILABILITY AND IMPLEMENTATION: bootRanges is freely available in the R/Bioconductor package nullranges hosted at https://bioconductor.org/packages/nullranges.


Assuntos
Genoma , Genômica , Genômica/métodos , Software
3.
Bioinformatics ; 39(5)2023 05 04.
Artigo em Inglês | MEDLINE | ID: mdl-37084270

RESUMO

MOTIVATION: Deriving biological insights from genomic data commonly requires comparing attributes of selected genomic loci to a null set of loci. The selection of this null set is non-trivial, as it requires careful consideration of potential covariates, a problem that is exacerbated by the non-uniform distribution of genomic features including genes, enhancers, and transcription factor binding sites. Propensity score-based covariate matching methods allow the selection of null sets from a pool of possible items while controlling for multiple covariates; however, existing packages do not operate on genomic data classes and can be slow for large data sets making them difficult to integrate into genomic workflows. RESULTS: To address this, we developed matchRanges, a propensity score-based covariate matching method for the efficient and convenient generation of matched null ranges from a set of background ranges within the Bioconductor framework. AVAILABILITY AND IMPLEMENTATION: Package: https://bioconductor.org/packages/nullranges, Code: https://github.com/nullranges, Documentation: https://nullranges.github.io/nullranges.


Assuntos
Genômica , Software , Genômica/métodos , Genoma , Sequências Reguladoras de Ácido Nucleico , Projetos de Pesquisa
4.
Bioinformatics ; 39(4)2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-37067481

RESUMO

SUMMARY: Exclusion regions are sections of reference genomes with abnormal pileups of short sequencing reads. Removing reads overlapping them improves biological signal, and these benefits are most pronounced in differential analysis settings. Several labs created exclusion region sets, available primarily through ENCODE and Github. However, the variety of exclusion sets creates uncertainty which sets to use. Furthermore, gap regions (e.g. centromeres, telomeres, short arms) create additional considerations in generating exclusion sets. We generated exclusion sets for the latest human T2T-CHM13 and mouse GRCm39 genomes and systematically assembled and annotated these and other sets in the excluderanges R/Bioconductor data package, also accessible via the BEDbase.org API. The package provides unified access to 82 GenomicRanges objects covering six organisms, multiple genome assemblies, and types of exclusion regions. For human hg38 genome assembly, we recommend hg38.Kundaje.GRCh38_unified_blacklist as the most well-curated and annotated, and sets generated by the Blacklist tool for other organisms. AVAILABILITY AND IMPLEMENTATION: https://bioconductor.org/packages/excluderanges/. Package website: https://dozmorovlab.github.io/excluderanges/.


Assuntos
Genoma Humano , Software , Animais , Humanos , Camundongos , Incerteza
5.
Hepatology ; 78(6): 1727-1741, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36120720

RESUMO

BACKGROUND AND AIMS: The oncogene Melanoma differentiation associated gene-9/syndecan binding protein (MDA-9/SDCBP) is overexpressed in many cancers, promoting aggressive, metastatic disease. However, the role of MDA-9 in regulating hepatocellular carcinoma (HCC) has not been well studied. APPROACH AND RESULTS: To unravel the function of MDA-9 in HCC, we generated and characterized a transgenic mouse with hepatocyte-specific overexpression of MDA-9 (Alb/MDA-9). Compared with wild-type (WT) littermates, Alb/MDA-9 mice demonstrated significantly higher incidence of N-nitrosodiethylamine/phenobarbital-induced HCC, with marked activation and infiltration of macrophages. RNA sequencing (RNA-seq) in naive WT and Alb/MDA-9 hepatocytes identified activation of signaling pathways associated with invasion, angiogenesis, and inflammation, especially NF-κB and integrin-linked kinase signaling pathways. In nonparenchymal cells purified from naive livers, single-cell RNA-seq showed activation of Kupffer cells and macrophages in Alb/MDA-9 mice versus WT mice. A robust increase in the expression of Secreted phosphoprotein 1 (Spp1/osteopontin) was observed upon overexpression of MDA-9. Inhibition of NF-κB pathway blocked MDA-9-induced Spp1 induction, and knock down of Spp1 resulted in inhibition of MDA-9-induced macrophage migration, as well as angiogenesis. CONCLUSIONS: Alb/MDA-9 is a mouse model with MDA-9 overexpression in any tissue type. Our findings unravel an HCC-promoting role of MDA-9 mediated by NF-κB and Spp1 and support the rationale of using MDA-9 inhibitors as a potential treatment for aggressive HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Melanoma , Camundongos , Animais , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , NF-kappa B/metabolismo , Sinteninas/genética , Sinteninas/metabolismo , Camundongos Transgênicos , Linhagem Celular Tumoral
6.
Proc Natl Acad Sci U S A ; 118(13)2021 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-33762304

RESUMO

MYCN-amplified neuroblastoma is a lethal subset of pediatric cancer. MYCN drives numerous effects in the cell, including metabolic changes that are critical for oncogenesis. The understanding that both compensatory pathways and intrinsic redundancy in cell systems exists implies that the use of combination therapies for effective and durable responses is necessary. Additionally, the most effective targeted therapies exploit an "Achilles' heel" and are tailored to the genetics of the cancer under study. We performed an unbiased screen on select metabolic targeted therapy combinations and correlated sensitivity with over 20 subsets of cancer. We found that MYCN-amplified neuroblastoma is hypersensitive to the combination of an inhibitor of the lactate transporter MCT1, AZD3965, and complex I of the mitochondrion, phenformin. Our data demonstrate that MCT4 is highly correlated with resistance to the combination in the screen and lowly expressed in MYCN-amplified neuroblastoma. Low MCT4 combines with high expression of the MCT2 and MCT1 chaperone CD147 in MYCN-amplified neuroblastoma, altogether conferring sensitivity to the AZD3965 and phenformin combination. The result is simultaneous disruption of glycolysis and oxidative phosphorylation, resulting in dramatic disruption of adenosine triphosphate (ATP) production, endoplasmic reticulum stress, and cell death. In mouse models of MYCN-amplified neuroblastoma, the combination was tolerable at concentrations where it shrank tumors and did not increase white-blood-cell toxicity compared to single drugs. Therefore, we demonstrate that a metabolic combination screen can identify vulnerabilities in subsets of cancer and put forth a metabolic combination therapy tailored for MYCN-amplified neuroblastoma that demonstrates efficacy and tolerability in vivo.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Transportadores de Ácidos Monocarboxílicos/antagonistas & inibidores , Proteína Proto-Oncogênica N-Myc/genética , Neuroblastoma/tratamento farmacológico , Simportadores/antagonistas & inibidores , Animais , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Apoptose/efeitos dos fármacos , Basigina/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Complexo I de Transporte de Elétrons/metabolismo , Amplificação de Genes , Humanos , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Transportadores de Ácidos Monocarboxílicos/metabolismo , Neuroblastoma/genética , Neuroblastoma/patologia , Fenformin/farmacologia , Fenformin/uso terapêutico , Pirimidinonas/farmacologia , Pirimidinonas/uso terapêutico , Simportadores/metabolismo , Tiofenos/farmacologia , Tiofenos/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
7.
Biochemistry ; 62(2): 543-553, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548985

RESUMO

Nonalcoholic fatty liver disease is a major risk factor for hepatocellular carcinoma (HCC). Astrocyte elevated gene-1/Metadherin (AEG-1/MTDH) augments lipid accumulation (steatosis), inflammation, and tumorigenesis, thereby promoting the whole spectrum of this disease process. Targeting AEG-1 is a potential interventional strategy for nonalcoholic steatohepatitis (NASH) and HCC. Thus, proper understanding of the regulation of this molecule is essential. We found that AEG-1 is palmitoylated at residue cysteine 75 (Cys75). Mutation of Cys75 to serine (Ser) completely abolished AEG-1 palmitoylation. We identified ZDHHC6 as a palmitoyltransferase catalyzing the process in HEK293T cells. To obtain insight into how palmitoylation regulates AEG-1 function, we generated knock-in mice by CRISPR/Cas9 in which Cys75 of AEG-1 was mutated to Ser (AEG-1-C75S). No developmental or anatomical abnormality was observed between AEG-1-wild type (AEG-1-WT) and AEG-1-C75S littermates. However, global gene expression analysis by RNA-sequencing unraveled that signaling pathways and upstream regulators, which contribute to cell proliferation, motility, inflammation, angiogenesis, and lipid accumulation, were activated in AEG-1-C75S hepatocytes compared to AEG-1-WT. These findings suggest that AEG-1-C75S functions as dominant positive and that palmitoylation restricts oncogenic and NASH-promoting functions of AEG-1. We thus identify a previously unknown regulatory mechanism of AEG-1, which might help design new therapeutic strategies for NASH and HCC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Camundongos , Humanos , Animais , Carcinoma Hepatocelular/metabolismo , Neoplasias Hepáticas/metabolismo , Cisteína/metabolismo , Hepatopatia Gordurosa não Alcoólica/genética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Lipoilação , Astrócitos/metabolismo , Astrócitos/patologia , Células HEK293 , Inflamação , Lipídeos , Proteínas de Ligação a RNA/metabolismo , Aciltransferases/genética , Aciltransferases/metabolismo
8.
Glia ; 71(10): 2437-2455, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37417428

RESUMO

Diverse subpopulations of astrocytes tile different brain regions to accommodate local requirements of neurons and associated neuronal circuits. Nevertheless, molecular mechanisms governing astrocyte diversity remain mostly unknown. We explored the role of a zinc finger transcription factor Yin Yang 1 (YY1) that is expressed in astrocytes. We found that specific deletion of YY1 from astrocytes causes severe motor deficits in mice, induces Bergmann gliosis, and results in simultaneous loss of GFAP expression in velate and fibrous cerebellar astrocytes. Single cell RNA-seq analysis showed that YY1 exerts specific effects on gene expression in subpopulations of cerebellar astrocytes. We found that although YY1 is dispensable for the initial stages of astrocyte development, it regulates subtype-specific gene expression during astrocyte maturation. Moreover, YY1 is continuously needed to maintain mature astrocytes in the adult cerebellum. Our findings suggest that YY1 plays critical roles regulating cerebellar astrocyte maturation during development and maintaining a mature phenotype of astrocytes in the adult cerebellum.


Assuntos
Astrócitos , Yin-Yang , Animais , Camundongos , Astrócitos/metabolismo , Cerebelo/metabolismo , Neurônios/metabolismo , Fatores de Transcrição/metabolismo
9.
Bioinformatics ; 38(3): 621-630, 2022 01 12.
Artigo em Inglês | MEDLINE | ID: mdl-34741515

RESUMO

MOTIVATION: Chromosome conformation capture technologies (Hi-C) revealed extensive DNA folding into discrete 3D domains, such as Topologically Associating Domains and chromatin loops. The correct binding of CTCF and cohesin at domain boundaries is integral in maintaining the proper structure and function of these 3D domains. 3D domains have been mapped at the resolutions of 1 kilobase and above. However, it has not been possible to define their boundaries at the resolution of boundary-forming proteins. RESULTS: To predict domain boundaries at base-pair resolution, we developed preciseTAD, an optimized transfer learning framework trained on high-resolution genome annotation data. In contrast to current TAD/loop callers, preciseTAD-predicted boundaries are strongly supported by experimental evidence. Importantly, this approach can accurately delineate boundaries in cells without Hi-C data. preciseTAD provides a powerful framework to improve our understanding of how genomic regulators are shaping the 3D structure of the genome at base-pair resolution. AVAILABILITY AND IMPLEMENTATION: preciseTAD is an R/Bioconductor package available at https://bioconductor.org/packages/preciseTAD/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Cromossomos , Genoma , Genômica , Aprendizado de Máquina
10.
FASEB J ; 36(7): e22372, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35639028

RESUMO

Non-alcoholic steatohepatitis (NASH) results from the accumulation of excessive liver lipids leading to hepatocellular injury, inflammation, and fibrosis that greatly increase the risk for hepatocellular carcinoma (HCC). Despite the well-characterized clinical and histological pathology for NASH-driven HCC in humans, its etiology remains unclear and there is a deficiency in pre-clinical models that recapitulate the progression of the human disease. Therefore, we developed a new mouse model amenable to genetic manipulations and gene targeting that mimics the gradual NASH to HCC progression observed in humans. C57BL/6NJ mice were fed a Western high-fat diet and sugar water (HFD/SW) and monitored for effects on metabolism, liver histology, tumor development, and liver transcriptome for up to 54 weeks. Chronic HFD/SW feeding led to significantly increased weight gain, serum and liver lipid levels, liver injury, and glucose intolerance. Hepatic pathology progressed and mice developed hepatocellular ballooning, inflammation, and worse fibrosis was apparent at 16 weeks, greatly increased through 32 weeks, and remained elevated at 54 weeks. Importantly, hepatocellular cancer spontaneously developed in 75% of mice on HFD/SW, half of which were HCC, whereas none of the mice on the chow diet developed HCC. Chronic HFD/SW induced molecular markers of de novo lipogenesis, endoplasmic reticulum stress, inflammation, and accumulation of p62, all of which also participate in the human pathology. Moreover, transcriptome analysis revealed activation of HCC-related genes and signatures associated with poor prognosis of human HCC. Overall, we have identified a new preclinical model that recapitulates known hallmarks of NASH-driven HCC that can be utilized for future molecular mechanistic studies of this disease.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Hepatopatia Gordurosa não Alcoólica , Animais , Carcinoma Hepatocelular/metabolismo , Dieta Ocidental/efeitos adversos , Fibrose , Inflamação/complicações , Neoplasias Hepáticas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/metabolismo
11.
Genes Dev ; 29(11): 1106-19, 2015 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-26019175

RESUMO

Fibrosis is a common disease process in which profibrotic cells disturb organ function by secreting disorganized extracellular matrix (ECM). Adipose tissue fibrosis occurs during obesity and is associated with metabolic dysfunction, but how profibrotic cells originate is still being elucidated. Here, we use a developmental model to investigate perivascular cells in white adipose tissue (WAT) and their potential to cause organ fibrosis. We show that a Nestin-Cre transgene targets perivascular cells (adventitial cells and pericyte-like cells) in WAT, and Nestin-GFP specifically labels pericyte-like cells. Activation of PDGFRα signaling in perivascular cells causes them to transition into ECM-synthesizing profibrotic cells. Before this transition occurs, PDGFRα signaling up-regulates mTOR signaling and ribosome biogenesis pathways and perturbs the expression of a network of epigenetically imprinted genes that have been implicated in cell growth and tissue homeostasis. Isolated Nestin-GFP(+) cells differentiate into adipocytes ex vivo and form WAT when transplanted into recipient mice. However, PDGFRα signaling opposes adipogenesis and generates profibrotic cells instead, which leads to fibrotic WAT in transplant experiments. These results identify perivascular cells as fibro/adipogenic progenitors in WAT and show that PDGFRα targets progenitor cell plasticity as a profibrotic mechanism.


Assuntos
Tecido Adiposo/citologia , Tecido Adiposo/fisiopatologia , Fibrose/fisiopatologia , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/metabolismo , Transdução de Sinais , Adipogenia/genética , Animais , Diferenciação Celular , Proliferação de Células , Transplante de Células , Células Cultivadas , Regulação Neoplásica da Expressão Gênica , Camundongos , Receptor alfa de Fator de Crescimento Derivado de Plaquetas/genética , Células-Tronco/patologia
12.
Pharmacogenet Genomics ; 31(9): 207-214, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34320608

RESUMO

OBJECTIVES: Phase II drug metabolism is poorly studied in advanced age and older adults may exhibit significant variability in their expression of phase II enzymes. We hypothesized that age-related changes to epigenetic regulation of genes involved in phase II drug metabolism may contribute to these effects. METHODS: We examined published epigenome-wide studies of human blood and identified the SULT1A1 and UGT1A6 genes as the top loci showing epigenetic changes with age. To assess possible functional alterations with age in the liver, we assayed DNA methylation (5mC) and histone acetylation changes around the mouse homologs Sult1a1 and Ugt1a6 in liver tissue from mice aged 4-32 months. RESULTS: Our sample shows a significant loss of 5mC at Sult1a1 (ß = -1.08, 95% CI [-1.8, -0.2], SE = 0.38, P = 0.011), mirroring the loss of 5mC with age observed in human blood DNA at the same locus. We also detected increased histone 3 lysine 9 acetylation (H3K9ac) with age at Sult1a1 (ß = 0.11, 95% CI [0.002, 0.22], SE = 0.05, P = 0.04), but no change to histone 3 lysine 27 acetylation (H3K27ac). Sult1a1 gene expression is significantly positively associated with H3K9ac levels, accounting for 23% of the variation in expression. We did not detect any significant effects at Ugt1a6. CONCLUSIONS: Sult1a1 expression is under epigenetic influence in normal aging and this influence is more pronounced for H3K9ac than DNA methylation or H3K27ac in this study. More generally, our findings support the relevance of epigenetics in regulating key drug-metabolizing pathways. In the future, epigenetic biomarkers could prove useful to inform dosing in older adults.


Assuntos
Epigênese Genética , Histonas , Acetilação , Idoso , Envelhecimento/genética , Animais , Histonas/genética , Histonas/metabolismo , Humanos , Fígado/metabolismo , Camundongos , Sulfotransferases/genética , Sulfotransferases/metabolismo
13.
Brief Bioinform ; 20(5): 1769-1780, 2019 09 27.
Artigo em Inglês | MEDLINE | ID: mdl-29939197

RESUMO

A fundamental challenge of modern biomedical research is understanding how diseases that are similar on the phenotypic level are similar on the molecular level. Integration of various genomic data sets with the traditionally used phenotypic disease similarity revealed novel genetic and molecular mechanisms and blurred the distinction between monogenic (Mendelian) and complex diseases. Network-based medicine has emerged as a complementary approach for identifying disease-causing genes, genetic mediators, disruptions in the underlying cellular functions and for drug repositioning. The recent development of machine and deep learning methods allow for leveraging real-life information about diseases to refine genetic and phenotypic disease relationships. This review describes the historical development and recent methodological advancements for studying disease classification (nosology).


Assuntos
Doenças Genéticas Inatas/classificação , Genômica , Fenótipo , Comorbidade , Doenças Genéticas Inatas/complicações , Doenças Genéticas Inatas/genética , Humanos , Aprendizado de Máquina , Terminologia como Assunto
14.
Proc Natl Acad Sci U S A ; 115(11): E2594-E2603, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29476008

RESUMO

HER2 (ERBB2) amplification is a driving oncogenic event in breast cancer. Clinical trials have consistently shown the benefit of HER2 inhibitors (HER2i) in treating patients with both local and advanced HER2+ breast cancer. Despite this benefit, their efficacy as single agents is limited, unlike the robust responses to other receptor tyrosine kinase inhibitors like EGFR inhibitors in EGFR-mutant lung cancer. Interestingly, the lack of HER2i efficacy occurs despite sufficient intracellular signaling shutdown following HER2i treatment. Exploring possible intrinsic causes for this lack of response, we uncovered remarkably depressed levels of NOXA, an endogenous inhibitor of the antiapoptotic MCL-1, in HER2-amplified breast cancer. Upon investigation of the mechanism leading to low NOXA, we identified a micro-RNA encoded in an intron of HER2, termed miR-4728, that targets the mRNA of the Estrogen Receptor α (ESR1). Reduced ESR1 expression in turn prevents ERα-mediated transcription of NOXA, mitigating apoptosis following treatment with the HER2i lapatinib. Importantly, resistance can be overcome with pharmacological inhibition of MCL-1. More generally, while many cancers like EGFR-mutant lung cancer are driven by activated kinases that when drugged lead to robust monotherapeutic responses, we demonstrate that the efficacy of targeted therapies directed against oncogenes active through focal amplification may be mitigated by coamplified genes.


Assuntos
Neoplasias da Mama/genética , Resistencia a Medicamentos Antineoplásicos/genética , Amplificação de Genes/genética , MicroRNAs/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/genética , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Feminino , Humanos , MicroRNAs/metabolismo , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-bcl-2/genética , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Receptor ErbB-2/metabolismo
15.
Int J Mol Sci ; 22(16)2021 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-34445292

RESUMO

The genes involved in implantation and placentation are tightly regulated to ensure a healthy pregnancy. The endoplasmic reticulum aminopeptidase 2 (ERAP2) gene is associated with preeclampsia (PE). Our studies have determined that an isoform of ERAP2-arginine (N), expressed in trophoblast cells (TC), significantly activates immune cells, and ERAP2N-expressing TCs are preferentially killed by both cytotoxic T lymphocytes (CTLs) and Natural Killer cells (NKCs). To understand the cause of this phenomenon, we surveyed differentially expressed genes (DEGs) between ERAP2N expressing and non-expressing TCs. Our RNAseq data revealed 581 total DEGs between the two groups. 289 genes were up-regulated, and 292 genes were down-regulated. Interestingly, most of the down-regulated genes of significance were pro-survival genes that play a crucial role in cell survival (LDHA, EGLN1, HLA-C, ITGB5, WNT7A, FN1). However, the down-regulation of these genes in ERAP2N-expressing TCs translates into a propensity for cell death. The Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis showed that 64 DEGs were significantly enriched in nine pathways, including "Protein processing in endoplasmic reticulum" and "Antigen processing and presentation", suggesting that the genes may be associated with peptide processes involved in immune recognition during the reproductive cycle.


Assuntos
Aminopeptidases/genética , Morte Celular/genética , Trofoblastos/metabolismo , Substituição de Aminoácidos/genética , Aminopeptidases/metabolismo , Arginina/genética , Células Cultivadas , Citotoxicidade Imunológica/genética , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Pré-Eclâmpsia/genética , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/patologia , Gravidez , Trofoblastos/patologia , Trofoblastos/fisiologia , Regulação para Cima/genética
16.
BMC Bioinformatics ; 21(1): 319, 2020 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-32689928

RESUMO

BACKGROUND: The three-dimensional (3D) structure of the genome plays a crucial role in gene expression regulation. Chromatin conformation capture technologies (Hi-C) have revealed that the genome is organized in a hierarchy of topologically associated domains (TADs), sub-TADs, and chromatin loops. Identifying such hierarchical structures is a critical step in understanding genome regulation. Existing tools for TAD calling are frequently sensitive to biases in Hi-C data, depend on tunable parameters, and are computationally inefficient. METHODS: To address these challenges, we developed a novel sliding window-based spectral clustering framework that uses gaps between consecutive eigenvectors for TAD boundary identification. RESULTS: Our method, implemented in an R package, SpectralTAD, detects hierarchical, biologically relevant TADs, has automatic parameter selection, is robust to sequencing depth, resolution, and sparsity of Hi-C data. SpectralTAD outperforms four state-of-the-art TAD callers in simulated and experimental settings. We demonstrate that TAD boundaries shared among multiple levels of the TAD hierarchy were more enriched in classical boundary marks and more conserved across cell lines and tissues. In contrast, boundaries of TADs that cannot be split into sub-TADs showed less enrichment and conservation, suggesting their more dynamic role in genome regulation. CONCLUSION: SpectralTAD is available on Bioconductor, http://bioconductor.org/packages/SpectralTAD/ .


Assuntos
Algoritmos , Cromatina/genética , Biologia Computacional/métodos , Regulação da Expressão Gênica , Genoma Humano , Software , Análise por Conglomerados , Humanos , Modelos Genéticos
17.
BMC Bioinformatics ; 21(1): 373, 2020 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-32854628

RESUMO

An amendment to this paper has been published and can be accessed via the original article.

18.
BMC Bioinformatics ; 21(1): 473, 2020 Oct 21.
Artigo em Inglês | MEDLINE | ID: mdl-33087046

RESUMO

BACKGROUND: Phenotypes such as height and intelligence, are thought to be a product of the collective effects of multiple phenotype-associated genes and interactions among their protein products. High/low degree of interactions is suggestive of coherent/random molecular mechanisms, respectively. Comparing the degree of interactions may help to better understand the coherence of phenotype-specific molecular mechanisms and the potential for therapeutic intervention. However, direct comparison of the degree of interactions is difficult due to different sizes and configurations of phenotype-associated gene networks. METHODS: We introduce a metric for measuring coherence of molecular-interaction networks as a slope of internal versus external distributions of the degree of interactions. The internal degree distribution is defined by interaction counts within a phenotype-specific gene network, while the external degree distribution counts interactions with other genes in the whole protein-protein interaction (PPI) network. We present a novel method for normalizing the coherence estimates, making them directly comparable. RESULTS: Using STRING and BioGrid PPI databases, we compared the coherence of 116 phenotype-associated gene sets from GWAScatalog against size-matched KEGG pathways (the reference for high coherence) and random networks (the lower limit of coherence). We observed a range of coherence estimates for each category of phenotypes. Metabolic traits and diseases were the most coherent, while psychiatric disorders and intelligence-related traits were the least coherent. We demonstrate that coherence and modularity measures capture distinct network properties. CONCLUSIONS: We present a general-purpose method for estimating and comparing the coherence of molecular-interaction gene networks that accounts for the network size and shape differences. Our results highlight gaps in our current knowledge of genetics and molecular mechanisms of complex phenotypes and suggest priorities for future GWASs.


Assuntos
Biologia Computacional/métodos , Doença , Redes Reguladoras de Genes , Humanos , Fenótipo , Mapas de Interação de Proteínas
19.
Breast Cancer Res ; 22(1): 3, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31910867

RESUMO

BACKGROUND: Breast cancer metastasis is driven by a profound remodeling of the cytoskeleton that enables efficient cell migration and invasion. Anillin is a unique scaffolding protein regulating major cytoskeletal structures, such as actin filaments, microtubules, and septin polymers. It is markedly overexpressed in breast cancer, and high anillin expression is associated with poor prognosis. The aim of this study was to investigate the role of anillin in breast cancer cell migration, growth, and metastasis. METHODS: CRISPR/Cas9 technology was used to deplete anillin in highly metastatic MDA-MB-231 and BT549 cells and to overexpress it in poorly invasive MCF10AneoT cells. The effects of anillin depletion and overexpression on breast cancer cell motility in vitro were examined by wound healing and Matrigel invasion assays. Assembly of the actin cytoskeleton and matrix adhesion were evaluated by immunofluorescence labeling and confocal microscopy. In vitro tumor development was monitored by soft agar growth assays, whereas cancer stem cells were examined using a mammosphere formation assay and flow cytometry. The effects of anillin knockout on tumor growth and metastasis in vivo were determined by injecting control and anillin-depleted breast cancer cells into NSG mice. RESULTS: Loss-of-function and gain-of-function studies demonstrated that anillin is necessary and sufficient to accelerate migration, invasion, and anchorage-independent growth of breast cancer cells in vitro. Furthermore, loss of anillin markedly attenuated primary tumor growth and metastasis of breast cancer in vivo. In breast cancer cells, anillin was localized in the nucleus; however, knockout of this protein affected the cytoplasmic/cortical events, e.g., the organization of actin cytoskeleton and cell-matrix adhesions. Furthermore, we observed a global transcriptional reprogramming of anillin-depleted breast cancer cells that resulted in suppression of their stemness and induction of the mesenchymal to epithelial trans-differentiation. Such trans-differentiation was manifested by the upregulation of basal keratins along with the increased expression of E-cadherin and P-cadherin. Knockdown of E-cadherin restored the impaired migration and invasion of anillin-deficient breast cancer cells. CONCLUSION: Our study demonstrates that anillin plays essential roles in promoting breast cancer growth and metastatic dissemination in vitro and in vivo and unravels novel functions of anillin in regulating breast cancer stemness and differentiation.


Assuntos
Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Proteínas dos Microfilamentos/metabolismo , Células-Tronco Neoplásicas/patologia , Animais , Diferenciação Celular/fisiologia , Linhagem Celular Tumoral , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos NOD , Camundongos SCID , Metástase Neoplásica , Células-Tronco Neoplásicas/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Bioinformatics ; 35(17): 2916-2923, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30668639

RESUMO

MOTIVATION: With the development of chromatin conformation capture technology and its high-throughput derivative Hi-C sequencing, studies of the three-dimensional interactome of the genome that involve multiple Hi-C datasets are becoming available. To account for the technology-driven biases unique to each dataset, there is a distinct need for methods to jointly normalize multiple Hi-C datasets. Previous attempts at removing biases from Hi-C data have made use of techniques which normalize individual Hi-C datasets, or, at best, jointly normalize two datasets. RESULTS: Here, we present multiHiCcompare, a cyclic loess regression-based joint normalization technique for removing biases across multiple Hi-C datasets. In contrast to other normalization techniques, it properly handles the Hi-C-specific decay of chromatin interaction frequencies with the increasing distance between interacting regions. multiHiCcompare uses the general linear model framework for comparative analysis of multiple Hi-C datasets, adapted for the Hi-C-specific decay of chromatin interaction frequencies. multiHiCcompare outperforms other methods when detecting a priori known chromatin interaction differences from jointly normalized datasets. Applied to the analysis of auxin-treated versus untreated experiments, and CTCF depletion experiments, multiHiCcompare was able to recover the expected epigenetic and gene expression signatures of loss of chromatin interactions and reveal novel insights. AVAILABILITY AND IMPLEMENTATION: multiHiCcompare is freely available on GitHub and as a Bioconductor R package https://bioconductor.org/packages/multiHiCcompare. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Cromatina , Epigenômica , Genoma , Software , Conformação Molecular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA