Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
World J Microbiol Biotechnol ; 38(7): 114, 2022 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-35578144

RESUMO

Burkholderia ambifaria T16 is a bacterium isolated from the rhizosphere of barley plants that showed a remarkable antifungal activity. This strain was also able to degrade fusaric acid (5-Butylpyridine-2-carboxylic acid) and detoxify this mycotoxin in inoculated barley seedlings. Genes and enzymes responsible for fusaric acid degradation have an important biotechnological potential in the control of fungal diseases caused by fusaric acid producers, or in the biodegradation/bio catalysis processes of pyridine derivatives. In this study, the complete genome of B. ambifaria T16 was sequenced and analyzed to identify genes involved in survival and competition in the rhizosphere, plant growth promotion, fungal growth inhibition, and degradation of aromatic compounds. The genomic analysis revealed the presence of several operons for the biosynthesis of antimicrobial compounds, such as pyrrolnitrin, ornibactin, occidiofungin and the membrane-associated AFC-BC11. These compounds were also detected in bacterial culture supernatants by mass spectrometry analysis. In addition, this strain has multiple genes contributing to its plant growth-promoting profile, including those for acetoin, 2,3-butanediol and indole-3-acetic acid production, siderophores biosynthesis, and solubilisation of organic and inorganic phosphate. A pan-genomic analysis demonstrated that the genome of strain T16 possesses large gene clusters that are absent in the genomes of B. ambifaria reference strains. According to predictions, most of these clusters would be involved in aromatic compounds degradation. One genomic region, encoding flavin-dependent monooxygenases of unknown function, is proposed as a candidate responsible for fusaric acid degradation.


Assuntos
Anti-Infecciosos , Complexo Burkholderia cepacia , Burkholderia , Micotoxinas , Anti-Infecciosos/metabolismo , Burkholderia/metabolismo , Complexo Burkholderia cepacia/genética , Ácido Fusárico/metabolismo , Genoma Bacteriano , Micotoxinas/metabolismo
2.
J Proteome Res ; 18(10): 3615-3629, 2019 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-31432679

RESUMO

Acid soils constitute a severe problem for leguminous crops mainly through a disturbance in rhizobium-legume interactions. Rhizobium favelukesii-an acid-tolerant rhizobium able to nodulate alfalfa-is highly competitive for nodule occupation under acid conditions but inefficient for biologic nitrogen fixation. In this work, we obtained a general description of the acid-stress response of R. favelukesii LPU83 by means of proteomics by comparing the total proteome profiles in the presence or absence of acid stress by nanoflow ultrahigh-performance liquid chromatography coupled to mass spectrometry. Thus, a total of 336 proteins were identified with a significant differential expression, 136 of which species were significantly overexpressed and 200 underexpressed in acidity. An in silico functional characterization with those respective proteins revealed a complex and pleiotropic response by these rhizobia involving components of oxidative phosphorylation, glutamate metabolism, and peptidoglycan biosynthesis, among other pathways. Furthermore, a lower permeability was evidenced in the acid-stressed cells along with several overexpressed proteins related to γ-aminobutyric acid metabolism, such as the gene product of livK, which gene was mutated. This mutant exhibited an acid-sensitive phenotype in agreement with the proteomics results. We conclude that both the γ-aminobutyric acid metabolism and a modified cellular envelope could be relevant to acid tolerance in R. favelukesii.


Assuntos
Proteínas de Bactérias/análise , Proteômica/métodos , Rhizobium/química , Estresse Fisiológico/efeitos dos fármacos , Ácidos/farmacologia , Proteínas de Bactérias/fisiologia , Permeabilidade da Membrana Celular , Cromatografia Líquida de Alta Pressão , Espectrometria de Massas , Mutação , Nodulação , Rhizobium/fisiologia , Solo/química , Ácido gama-Aminobutírico/genética , Ácido gama-Aminobutírico/metabolismo
3.
Int J Syst Evol Microbiol ; 68(1): 14-20, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29095137

RESUMO

Bacteria from the Burkholderia cepacia complex (Bcc) are capable of causing severe infections in patients with cystic fibrosis (CF). These opportunistic pathogens are also widely distributed in natural and man-made environments. After a 12-year epidemiological surveillance involving Bcc bacteria from respiratory secretions of Argentinean patients with CF and from hospital settings, we found six isolates of the Bcc with a concatenated species-specific allele sequence that differed by more than 3 % from those of the Bcc with validly published names. According to the multilocus sequence analysis (MLSA), these isolates clustered with the agricultural soil strain, Burkholderia sp. PBP 78, which was already deposited in the PubMLST database. The isolates were examined using a polyphasic approach, which included 16S rRNA, recA, Matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), DNA base composition, average nucleotide identities (ANIs), fatty acid profiles, and biochemical characterizations. The results of the present study demonstrate that the seven isolates represent a single novel species within the Bcc, for which the name Burkholderia puraquae sp. nov. is proposed. Burkholderia puraquae sp. nov. CAMPA 1040T (=LMG 29660T=DSM 103137T) was designated the type strain of the novel species, which can be differentiated from other species of the Bcc mainly from recA gene sequence analysis, MLSA, ANIb, MALDI-TOF MS analysis, and some biochemical tests, including the ability to grow at 42 °C, aesculin hydrolysis, and lysine decarboxylase and ß-galactosidase activities.


Assuntos
Complexo Burkholderia cepacia/classificação , Fibrose Cística/microbiologia , Filogenia , Microbiologia do Solo , Agricultura , Técnicas de Tipagem Bacteriana , Composição de Bases , DNA Bacteriano/genética , Ácidos Graxos/química , Genes Bacterianos , Humanos , Tipagem de Sequências Multilocus , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Especificidade da Espécie , Escarro
4.
Int J Syst Evol Microbiol ; 64(Pt 6): 2003-2008, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24623656

RESUMO

Two Gram-negative, rod-shaped bacteria were isolated from agricultural soils in Córdoba province in central Argentina. Their 16S rRNA gene sequences demonstrated that they belong to the genus Burkholderia, with Burkholderia zhejiangensis as most closely related formally named species; this relationship was confirmed through comparative gyrB sequence analysis. Whole-cell fatty acid analysis supported their assignment to the genus Burkholderia. Burkholderia sp. strain YI23, for which a whole-genome sequence is available, represents the same taxon, as demonstrated by its highly similar 16S rRNA (100% similarity) and gyrB (99.1-99.7%) gene sequences. The results of DNA-DNA hybridization experiments and physiological and biochemical characterization further substantiated the genotypic and phenotypic distinctiveness of the Argentinian soil isolates, for which the name Burkholderia cordobensis sp. nov. is proposed, with strain MMP81(T) ( = LMG 27620(T) = CCUG 64368(T)) as the type strain.


Assuntos
Burkholderia/classificação , Filogenia , Microbiologia do Solo , Agricultura , Argentina , Técnicas de Tipagem Bacteriana , Composição de Bases , Burkholderia/genética , Burkholderia/isolamento & purificação , DNA Girase/genética , DNA Bacteriano/genética , Ácidos Graxos/química , Genótipo , Dados de Sequência Molecular , Hibridização de Ácido Nucleico , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
5.
Plasmid ; 67(3): 199-210, 2012 May.
Artigo em Inglês | MEDLINE | ID: mdl-22233546

RESUMO

Rhizobia are Gram-negative bacteria that live in soils and associate with leguminous plants to establish nitrogen-fixing symbioses. The ability of these bacteria to undergo horizontal gene transfer (HGT) is thought to be one of the main features to explain both the origin of their symbiotic life-style and the plasticity and dynamics of their genomes. In our laboratory we have previously characterized at the species level the non-pSym plasmid mobilome in Sinorhizobium meliloti, the symbiont of Medicago spp., and have found a high incidence of conjugal activity in many plasmids (Pistorio et al., 2008). In this work we characterized the Dtr (DNA-transfer-and-replication) region of one of those plasmids, pSmeLPU88b. This mobilization region was found to represent a previously unclassified Dtr type in rhizobia (hereafter type-IV), highly ubiquitous in S. meliloti and found in other genera of Gram-negative bacteria as well; including Agrobacterium, Ochrobactrum, and Chelativorans. The oriT of the type-IV Dtr described here could be located by function within a DNA fragment of 278 bp, between the divergent genes parA and mobC. The phylogenetic analysis of the cognate relaxase MobZ indicated that this protein groups close to the previously defined MOB(P3) and MOB(P4) type of enzymes, but is located in a separate and novel cluster that we have designated MOB(P0). Noteworthy, MOB(P0) and MOB(P4) relaxases were frequently associated with plasmids present in rhizospheric soil bacteria. A comparison of the nod-gene locations with the phylogenetic topology of the rhizobial relaxases revealed that the symbiotic genes are found on diverse plasmids bearing any of the four Dtr types, thus indicating that pSym plasmids are not specifically associated with any particular mobilization system. Finally, we demonstrated that the type-IV Dtr promoted the mobilization of plasmids from S. meliloti to Sinorhizobium medicae as well as from these rhizobia to other bacteria by means of their own helper functions. The results present an as-yet-unclassified and seemingly ubiquitous conjugal system that provides a mechanistic support for the HGT between sympatric rhizobia of Medicago roots, and between other soil and rhizospheric bacteria.


Assuntos
DNA Bacteriano/isolamento & purificação , Genes Bacterianos , Bactérias Gram-Negativas/genética , Sinorhizobium meliloti/genética , Sinorhizobium/genética , Microbiologia do Solo , Sequência de Bases , Conjugação Genética , DNA Bacteriano/genética , Transferência Genética Horizontal , Bactérias Gram-Negativas/classificação , Medicago/microbiologia , Dados de Sequência Molecular , Fixação de Nitrogênio , Filogenia , Raízes de Plantas/microbiologia , Plasmídeos , Sinorhizobium/classificação , Sinorhizobium meliloti/classificação , Simbiose/genética , Simpatria
6.
Braz J Microbiol ; 53(3): 1633-1643, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35704174

RESUMO

The acidity of soils significantly reduces the productivity of legumes mainly because of the detrimental effects of hydrogen ions on the legume plants, leading to the establishment of an inefficient symbiosis and poor biological nitrogen fixation. We recently reported the analysis of the fully sequenced genome of Rhizobium favelukesii LPU83, an alfalfa-nodulating rhizobium with a remarkable ability to grow, nodulate and compete in acidic conditions. To gain more insight into the genetic mechanisms leading to acid tolerance in R. favelukesii LPU83, we constructed a transposon mutant library and screened for mutants displaying a more acid-sensitive phenotype than the parental strain. We identified mutant Tn833 carrying a single-transposon insertion within LPU83_2531, an uncharacterized short ORF located immediately upstream from ubiF homolog. This gene encodes a protein with an enzymatic activity involved in the biosynthesis of ubiquinone. As the transposon was inserted near the 3' end of LPU83_2531 and these genes are cotranscribed as a part of the same operon, we hypothesized that the phenotype in Tn833 is most likely due to a polar effect on ubiF transcription.We found that a mutant in ubiF was impaired to grow at low pH and other abiotic stresses including 5 mM ascorbate and 0.500 mM Zn2+. Although the ubiF mutant retained the ability to nodulate alfalfa and Phaseolus vulgaris, it was unable to compete with the R. favelukesii LPU83 wild-type strain for nodulation in Medicago sativa and P. vulgaris, suggesting that ubiF is important for competitiveness. Here, we report for the first time an ubiF homolog being essential for nodulation competitiveness and tolerance to specific stresses in rhizobia.


Assuntos
Rhizobium , Simbiose , Ácidos/farmacologia , Medicago sativa/metabolismo , Fixação de Nitrogênio/genética , Rhizobium/genética , Simbiose/genética
7.
J Biotechnol ; 329: 80-91, 2021 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-33539896

RESUMO

The nitrogen-fixing α-proteobacterium Sinorhizobium meliloti genome codifies at least 50 response regulator (RR) proteins mediating different and, in many cases, unknown processes. RR-mutant library screening allowed us to identify genes potentially implicated in survival to acid conditions. actJ mutation resulted in a strain with reduced growth rate under mildly acidic conditions as well as a lower capacity to tolerate a sudden shift to lethal acidic conditions compared with the parental strain. Mutation of the downstream gene actK, which encodes for a histidine kinase, showed a similar phenotype in acidic environments suggesting a functional two-component system. Interestingly, even though nodulation kinetics, quantity, and macroscopic morphology of Medicago sativa nodules were not affected in actJ and actK mutants, ActK was required to express the wild-type nitrogen fixation phenotype and ActJK was necessary for full bacteroid development and nodule occupancy. The actJK regulatory system presented here provides insights into an evolutionary process in rhizobium adaptation to acidic environments and suggests that actJK-controlled functions are crucial for optimal symbiosis development.


Assuntos
Sinorhizobium meliloti , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Medicago sativa/metabolismo , Fixação de Nitrogênio , Sinorhizobium meliloti/genética , Sinorhizobium meliloti/metabolismo , Simbiose/genética
8.
FEMS Microbiol Ecol ; 97(1)2020 12 30.
Artigo em Inglês | MEDLINE | ID: mdl-33220679

RESUMO

Acidic environments naturally occur worldwide and inappropriate agricultural management may also cause acidification of soils. Low soil pH values are an important barrier in the plant-rhizobia interaction. Acidic conditions disturb the establishment of the efficient rhizobia usually used as biofertilizer. This negative effect on the rhizobia-legume symbiosis is mainly due to the low acid tolerance of the bacteria. Here, we describe the identification of relevant factors in the acid tolerance of Rhizobium favelukesii using transcriptome sequencing. A total of 1924 genes were differentially expressed under acidic conditions, with ∼60% underexpressed. Rhizobium favelukesii acid response mainly includes changes in the energy metabolism and protein turnover, as well as a combination of mechanisms that may contribute to this phenotype, including GABA and histidine metabolism, cell envelope modifications and reverse proton efflux. We confirmed the acid-sensitive phenotype of a mutant in the braD gene, which showed higher expression under acid stress. Remarkably, 60% of the coding sequences encoded in the symbiotic plasmid were underexpressed and we evidenced that a strain cured for this plasmid featured an improved performance under acidic conditions. Hence, this work provides relevant information in the characterization of genes associated with tolerance or adaptation to acidic stress of R. favelukesii.


Assuntos
Rhizobium , Ácidos/toxicidade , Perfilação da Expressão Gênica , Rhizobium/genética , Simbiose
9.
FEMS Microbiol Ecol ; 65(3): 372-82, 2008 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-18537840

RESUMO

The biology and biochemistry of plasmid transfer in soil bacteria is currently under active investigation because of its central role in prokaryote adaptation and evolution. In this work, we examined the conjugal properties of the cryptic plasmids present in a collection of the N(2)-fixing legume-symbiont Sinorhizobium meliloti. The study was performed on 65 S. meliloti isolates recovered from 25 humic soils of Argentina, which were grouped into 22 plasmid-profile types [i.e. plasmid operational taxonomic units (OTUs)]. The cumulative Shannon index calculated for the observed plasmid profiles showed a clear saturation plateau, thus indicating an adequate representation of the S. meliloti plasmid-profile types in the isolates studied. The results show that isolates of nearly 14% of the plasmid OTUs hosted transmissible plasmids and that isolates of 29% of the plasmid OTUs were able to retransfer the previously characterized mobilizable-cryptic plasmid pSmeLPU88b to a third recipient strain. It is noteworthy that isolates belonging to 14% of the plasmid OTUs proved to be refractory to the entrance of the model plasmid pSmeLPU88b, suggesting either the presence of surface exclusion phenomena or the occurrence of restriction incompatibility with the incoming replicon. Incompatibility for replication between resident plasmids and plasmid pSmeLPU88b was observed in c. 20% of the OTUs. The results reported here reveal a widespread compatibility among the conjugal functions of the cryptic plasmids in S. meliloti, and this fact, together with the observed high proportion of existing donor genotypes, points to the extrachromosomal compartment of the species as being an extremely active plasmid mobilome.


Assuntos
Conjugação Genética , Plasmídeos , Sinorhizobium meliloti/genética , Argentina , Biodiversidade , Impressões Digitais de DNA , DNA Bacteriano/genética , Transferência Genética Horizontal , Variação Genética , Genética Populacional , Genótipo , Sinorhizobium meliloti/classificação , Microbiologia do Solo , Simbiose
10.
Genome Announc ; 5(47)2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29167247

RESUMO

We report here the draft genome sequence of Burkholderia puraquae type strain CAMPA 1040, a member of the Burkholderia cepacia complex. This strain, isolated from a hemodialysis water reservoir, harbors several stress tolerance genes, such as the systems for low oxygen survival, for copper tolerance, and for osmotic stress resistance.

11.
FEMS Microbiol Lett ; 302(2): 123-30, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19958387

RESUMO

Sinorhizobium meliloti associates with Medicago and Melilotus species to develop nitrogen-fixing symbioses. The agricultural relevance of these associations, the worldwide distribution of acid soils, and the remarkable acid sensitivity of the microsymbiont have all stimulated research on the responses of the symbionts to acid environments. We show here that an adaptive acid-tolerance response (ATR) can be induced in S. meliloti, as shown previously for Sinorhizobium medicae, when the bacteria are grown in batch cultures at the slightly acid pH of 6.1. In marked contrast, no increased tolerance to hydrogen ions is obtained if rhizobia are grown in a chemostat under continuous cultivation at the same pH. The adaptive ATR appears as a complex process triggered by an increased hydrogen-ion concentration, but operative only if other--as yet unknown--concomitant factors that depend on the culture conditions are present (although not provided under continuous cultivation). Although the stability of the ATR and its influence on acid tolerance has been characterized in rhizobia, no data have been available on the effect of the adapted state on symbiosis. Coinoculation experiments showed that acid-adapted indicator rhizobia (ATR+) were present in >90% of the nodules when nodulation was performed at pH 5.6, representing a >30% increase in occupancy compared with a control test. We show that the ATR represents a clear advantage in competing for nodulation at low pH. It is not yet clear whether such an effect results from an improved performance in the acid environment during preinfection, an enhanced ability to initiate infections, or both conditions. The practical use of ATR+ rhizobia will depend on validation experiments with soil microcosms and on field testing, as well as on the possibility of preserving the physiology of ATR+ bacteria in inoculant formulations.


Assuntos
Ácidos/metabolismo , Antibacterianos/metabolismo , Medicago sativa/microbiologia , Viabilidade Microbiana , Sinorhizobium meliloti/fisiologia , Estresse Fisiológico , Simbiose , Contagem de Colônia Microbiana , Meios de Cultura/química , Concentração de Íons de Hidrogênio , Nodulação , Sinorhizobium meliloti/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA