Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Biol Sci ; 291(2029): 20241183, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-39163979

RESUMO

In the Atlantic Arctic, bowhead whales (Balaena mysticetus) were nearly exterminated by European whalers between the seventeenth and nineteenth centuries. The collapse of the East Greenland-Svalbard-Barents Sea population, from an estimated 50 000 to a few hundred individuals, drastically reduced predation on mesozooplankton. Here, we tested the hypothesis that this event strongly favoured the demography of the little auk (Alle alle), a zooplanktivorous feeder competitor of bowhead whales and the most abundant seabird in the Arctic. To estimate the effect of bowhead whaling on little auk abundance, we modelled the trophic niche overlap between the two species using deterministic simulations of mesozooplankton spatial distribution. We estimated that bowhead whaling could have led to a 70% increase in northeast Atlantic Arctic little auk populations, from 2.8 to 4.8 million breeding pairs. While corresponding to a major population increase, this is far less than predicted by previous studies. Our study illustrates how a trophic shift can result from the near extirpation of a marine megafauna species, and the methodological framework we developed opens up new opportunities for marine trophic modelling.


Assuntos
Cadeia Alimentar , Animais , Regiões Árticas , Baleia Franca/fisiologia , Dinâmica Populacional , Oceano Atlântico , Modelos Biológicos , Zooplâncton/fisiologia , Comportamento Predatório , Groenlândia
2.
Nat Commun ; 15(1): 3341, 2024 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-38684684

RESUMO

Thriving in both epipelagic and mesopelagic layers, Rhizaria are biomineralizing protists, mixotrophs or flux-feeders, often reaching gigantic sizes. In situ imaging showed their contribution to oceanic carbon stock, but left their contribution to element cycling unquantified. Here, we compile a global dataset of 167,551 Underwater Vision Profiler 5 Rhizaria images, and apply machine learning models to predict their organic carbon and biogenic silica biomasses in the uppermost 1000 m. We estimate that Rhizaria represent up to 1.7% of mesozooplankton carbon biomass in the top 500 m. Rhizaria biomass, dominated by Phaeodaria, is more than twice as high in the mesopelagic than in the epipelagic layer. Globally, the carbon demand of mesopelagic, flux-feeding Phaeodaria reaches 0.46 Pg C y-1, representing 3.8 to 9.2% of gravitational carbon export. Furthermore, we show that Rhizaria are a unique source of biogenic silica production in the mesopelagic layer, where no other silicifiers are present. Our global census further highlights the importance of Rhizaria for ocean biogeochemistry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA