Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
PLoS One ; 17(1): e0262460, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35015770

RESUMO

With the increasing popularity of local blending of fertilisers, the fertiliser industry faces issues regarding quality control and fertiliser adulteration. Another problem is the contamination of fertilisers with trace elements that have been shown to subsequently accumulate in the soil and be taken up by plants, posing a danger to the environment and human health. Conventional characterisation methods necessary to ensure the quality of fertilisers and to comply with local regulations are costly, time consuming and sometimes not even accessible. Alternatively, using a wide range of unamended and intentionally amended fertilisers this study developed empirical calibrations for a portable handheld X-ray fluorescence (pXRF) spectrometer, determined the reliability for estimating the macro and micro nutrients and evaluated the use of the pXRF for the high-throughput detection of trace element contaminants in fertilisers. The models developed using pXRF for Mg, P, S, K, Ca, Mn, Fe, Zn and Mo had R2 values greater or equal to 0.97. These models also performed well on validation, with R2 values greater or equal to 0.97 (except for Fe, R2val = 0.55) and slope values ranging from 0.81 to 1.44. A second set of models were developed with a focus on trace elements in amended fertilisers. The R2 values of calibration for Co, Ni, As, Se, Cd and Pb were greater than or equal to 0.80. At concentrations up to 1000 mg kg-1, good validation statistics were also obtained; R2 values ranged from 0.97-0.99, except in one instance. The regression coefficients of the validation also had good prediction in the range of 0-100 mg kg-1 (R2 values were from 0.78-0.99), but not as well at lower concentrations up to 20 mg kg-1 (R2 values ranged from 0.10-0.99), especially for Cd. This study has demonstrated that pXRF can measure several major (P, Ca) and micro (Mn, Fe, Cu) nutrients, as well as trace elements and potential contaminants (Cr, Ni, As) in fertilisers with high accuracy and precision. The results obtained in this study is good, especially considering that loose powders were scanned for a maximum of 90 seconds without the use of a vacuum pump.


Assuntos
Monitoramento Ambiental/métodos , Fertilizantes/análise , Nutrientes/análise , Poluentes do Solo/análise , Solo/química , Espectrometria por Raios X/métodos , Oligoelementos/análise
2.
PLoS One ; 15(12): e0242821, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33301449

RESUMO

Portable X-ray fluorescence (pXRF) and Diffuse Reflectance Fourier Transformed Mid-Infrared (DRIFT-MIR) spectroscopy are rapid and cost-effective analytical tools for material characterization. Here, we provide an assessment of these methods for the analysis of total Carbon, Nitrogen and total elemental composition of multiple elements in organic amendments. We developed machine learning methods to rapidly quantify the concentrations of macro- and micronutrient elements present in the samples and propose a novel system for the quality assessment of organic amendments. Two types of machine learning methods, forest regression and extreme gradient boosting, were used with data from both pXRF and DRIFT-MIR spectroscopy. Cross-validation trials were run to evaluate generalizability of models produced on each instrument. Both methods demonstrated similar broad capabilities in estimating nutrients using machine learning, with pXRF being suitable for nutrients and contaminants. The results make portable spectrometry in combination with machine learning a scalable solution to provide comprehensive nutrient analysis for organic amendments.


Assuntos
Fertilizantes/análise , Aprendizado de Máquina , Nutrientes/análise , Agricultura Orgânica , Solo/química , Espectrometria por Raios X , Espectroscopia de Infravermelho com Transformada de Fourier
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA