Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
J Immunol ; 211(10): 1589-1604, 2023 11 15.
Artigo em Inglês | MEDLINE | ID: mdl-37756529

RESUMO

GM-CSF has been employed as an adjuvant to cancer immunotherapy with mixed results based on dosage. We previously showed that GM-CSF regulated tumor angiogenesis by stimulating soluble vascular endothelial growth factor (VEGF) receptor-1 from monocytes/macrophages in a dose-dependent manner that neutralized free VEGF, and intratumoral injections of high-dose GM-CSF ablated blood vessels and worsened hypoxia in orthotopic polyoma middle T Ag (PyMT) triple-negative breast cancer (TNBC). In this study, we assessed both immunoregulatory and oxygen-regulatory components of low-dose versus high-dose GM-CSF to compare effects on tumor oxygen, vasculature, and antitumor immunity. We performed intratumoral injections of low-dose GM-CSF or saline controls for 3 wk in FVB/N PyMT TNBC. Low-dose GM-CSF uniquely reduced tumor hypoxia and normalized tumor vasculature by increasing NG2+ pericyte coverage on CD31+ endothelial cells. Priming of "cold," anti-PD1-resistant PyMT tumors with low-dose GM-CSF (hypoxia reduced) sensitized tumors to anti-PD1, whereas high-dose GM-CSF (hypoxia exacerbated) did not. Low-dose GM-CSF reduced hypoxic and inflammatory tumor-associated macrophage (TAM) transcriptional profiles; however, no phenotypic modulation of TAMs or tumor-infiltrating lymphocytes were observed by flow cytometry. In contrast, high-dose GM-CSF priming increased infiltration of TAMs lacking the MHC class IIhi phenotype or immunostimulatory marker expression, indicating an immunosuppressive phenotype under hypoxia. However, in anti-PD1 (programmed cell death 1)-susceptible BALB/c 4T1 tumors (considered hot versus PyMT), high-dose GM-CSF increased MHC class IIhi TAMs and immunostimulatory molecules, suggesting disparate effects of high-dose GM-CSF across PyMT versus 4T1 TNBC models. Our data demonstrate a (to our knowledge) novel role for low-dose GM-CSF in reducing tumor hypoxia for synergy with anti-PD1 and highlight why dosage and setting of GM-CSF in cancer immunotherapy regimens require careful consideration.


Assuntos
Neoplasias Mamárias Animais , Neoplasias de Mama Triplo Negativas , Animais , Humanos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Macrófagos , Fator A de Crescimento do Endotélio Vascular/metabolismo , Células Endoteliais/metabolismo , Hipóxia/patologia , Oxigênio/metabolismo
2.
Anal Chem ; 95(2): 946-954, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36537829

RESUMO

Hypoxia, acidosis, and elevated inorganic phosphate concentration are characteristics of the tumor microenvironment in solid tumors. There are a number of methods for measuring each parameter individually in vivo, but the only method to date for noninvasive measurement of all three variables simultaneously in vivo is electron paramagnetic spectroscopy paired with a monophosphonated trityl radical, pTAM/HOPE. While HOPE has been successfully used for in vivo studies upon intratissue injection, it cannot be delivered intravenously due to systemic toxicity and albumin binding, which causes significant signal loss. Therefore, we present HOPE71, a monophosphonated trityl radical derived from the very biocompatible trityl probe, Ox071. Here, we describe a straightforward synthesis of HOPE71 starting with Ox071 and report its EPR sensitivities to pO2, pH, and [Pi] with X-band and L-band EPR spectroscopy. We also confirm that HOPE71 lacks albumin binding, shows low cytotoxicity, and has systemic tolerance. Finally, we demonstrate its ability to profile the tumor microenvironment in vivo in a mouse model of breast cancer.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Neoplasias , Oxigênio , Compostos de Tritil , Animais , Camundongos , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Concentração de Íons de Hidrogênio , Hipóxia , Oxigênio/química , Microambiente Tumoral , Compostos de Tritil/química , Técnicas Biossensoriais
3.
Appl Magn Reson ; 54(8): 779-791, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38707765

RESUMO

The viscosity measurements are of clinical significance for evaluation of the potential pathological conditions of biological lubricants such as synovial fluids of joints, and for formulation and characterization of peptide- and protein-based biotherapeutics. Due to inherent potential therapeutic activity, protein drugs have proven to be one of the most efficient therapeutic agents in treatment of several life-threatening disorders, such as diabetes and autoimmune diseases. However, home-use applications for treating chronic inflammatory diseases, such as diabetes and rheumatoid arthritis, necessitate the development of high-concentration insulin and monoclonal antibodies formulations for patient self-administration. High protein concentrations can affect viscosity of the corresponding drug solutions complicating their manufacture and administration. The measurements of the viscosity of new insulin analogs and monoclonal antibodies solutions under development is of practical importance to avoid unwanted highly viscous, and therefore, painful for injection drug formulations. Recently, we have demonstrated capability of the electron paramagnetic resonance (EPR) viscometry using viscosity-sensitive 13C-labeled trityl spin probe (13C1-dFT) to report the viscosity of human blood, and interstitial fluids measured in various organs in mice ex-vivo and in anesthetized mice, in vivo. In the present work, we demonstrate utility of the EPR viscometry using 13C1-dFT to measure microviscosity of commercial insulin samples, antibodies solution, and human synovial fluids using small microliter volume samples (5-50 µL). This viscometry analysis approach provides useful tool to control formulations and administration of new biopharmaceuticals, and for evaluation of the state of synovial fluids of importance for clinical applications.

4.
Chemistry ; 28(68): e202202556, 2022 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-36089532

RESUMO

Dynamic nuclear polarization (DNP) is an NMR sensitivity enhancement technique that mediates polarization transfer from unpaired electrons to NMR-active nuclei. Despite its success in elucidating important structural information on biological and inorganic materials, the detailed polarization-transfer pathway from the electrons to the nearby and then the bulk solvent nuclei, and finally to the molecules of interest-remains unclear. In particular, the nuclei in the paramagnetic polarizing agent play significant roles in relaying the enhanced NMR polarizations to more remote nuclei. Despite their importance, the direct NMR observation of these nuclei is challenging because of poor sensitivity. Here, we show that a combined DNP and electron decoupling approach can facilitate direct NMR detection of these nuclei. We achieved an ∼80 % improvement in NMR intensity via electron decoupling at 0.35 T and 80 K on trityl radicals. Moreover, we recorded a DNP enhancement factor of ϵ ${\varepsilon{} }$ ∼90 and ∼11 % higher NMR intensity using electron decoupling on paramagnetic metal-organic framework, magnesium hexaoxytriphenylene (MgHOTP MOF).


Assuntos
Elétrons
5.
Analyst ; 147(24): 5643-5648, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36373434

RESUMO

We describe the synthesis, characterization, and application of an isotopologue of the trityl radical OX071, labeled with 13C at the central carbon (13C1). This spin probe features large anisotropy of the hyperfine coupling with the 13C1 (I = 1/2), leading to an EPR spectrum highly sensitive to molecular tumbling. The high biocompatibility and lack of interaction with blood albumin allow for systemic delivery and in vivo measurement of tissue microviscosity by EPR.


Assuntos
Compostos de Tritil , Espectroscopia de Ressonância de Spin Eletrônica
6.
Appl Magn Reson ; 53(3-5): 797-808, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35601029

RESUMO

A perchlorotriarylmethyl tricarboxylic acid radical 99% enriched in 13C at the central carbon (13C1-PTMTC) was characterized in phosphate buffered saline solution (pH = 7.2) (PBS) at ambient temperature. Samples immobilized in 1:1 PBS:glycerol or in 9:1 trehalose:sucrose were studied as a function of temperature. Isotope enrichment at C1 creates a trityl that can be used to accurately measure microscopic viscosity. Understanding of the impact of the 13C hyperfine interaction on electron spin relaxation is important for application of this trityl in oximetry and distance measurements. The anisotropic 13C1 hyperfine couplings (Ax = Ay = 24 ± 2 MHz, Az = 200 ± 1 MHz) are larger than for the related 13C1-perdeuterated Finland trityl (13C1-dFT) and the g anisotropy (gx = 2.0013, gy = 2.0016, gz = 2.0042) is slightly larger than for 13C1-dFT. The tumbling correlation times (τR) for 13C1-PTMTC are 0.20 ± 0.02 ns in PBS and 0.40 ± 0.05 ns in 3:1 PBS:glycerol, which are shorter than for 13C1-dFT in the same solutions. T1 for 13C1-PTMTC is 3.5 ± 0.5 µs in PBS and 5.3 ± 0.4 µs in 3:1 PBS:glycerol, which are shorter than for 13C1-dFT due to faster tumbling, larger anisotropy of the 13C1 hyperfine, and about 30% larger contribution from the local mode. In immobilized samples T1 for 13C1-PTMTC is similar to that for 13C1-dFT and other trityls without chlorine or 13C1 substituents, indicating that the 13C1 and Cl substituents on the phenyl rings have little impact on T1. The temperature dependence of T1 was modeled with contributions from the direct, Raman, and local mode processes. Broadening of CW linewidths of about 0.6 G in fluid solution and about 2 G in rigid lattice is attributed to unresolved 35,37Cl hyperfine couplings.

7.
Molecules ; 26(9)2021 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-34066858

RESUMO

Alterations in viscosity of biological fluids and tissues play an important role in health and diseases. It has been demonstrated that the electron paramagnetic resonance (EPR) spectrum of a 13C-labeled trityl spin probe (13C-dFT) is highly sensitive to the local viscosity of its microenvironment. In the present study, we demonstrate that X-band (9.5 GHz) EPR viscometry using 13C-dFT provides a simple tool to accurately measure the microviscosity of human blood in microliter volumes obtained from healthy volunteers. An application of low-field L-band (1.2 GHz) EPR with a penetration depth of 1-2 cm allowed for microviscosity measurements using 13C-dFT in the living tissues from isolated organs and in vivo in anesthetized mice. In summary, this study demonstrates that EPR viscometry using a 13C-dFT probe can be used to noninvasively and rapidly measure the microviscosity of blood and interstitial fluids in living tissues and potentially to evaluate this biophysical marker of microenvironment under various physiological and pathological conditions in preclinical and clinical settings.


Assuntos
Viscosidade Sanguínea , Isótopos de Carbono/química , Líquido Extracelular/química , Marcadores de Spin , Compostos de Tritil/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Feminino , Voluntários Saudáveis , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Molecular , Viscosidade
8.
AAPS PharmSciTech ; 22(5): 191, 2021 Jun 24.
Artigo em Inglês | MEDLINE | ID: mdl-34169366

RESUMO

Granulocyte-macrophage colony-stimulating factor (GM-CSF) has demonstrated notable clinical activity in cancer immunotherapy, but it is limited by systemic toxicities, poor bioavailability, rapid clearance, and instability in vivo. Nanoparticles (NPs) may overcome these limitations and provide a mechanism for passive targeting of tumors. This study aimed to develop GM-CSF-loaded PLGA/PLGA-PEG NPs and evaluate them in vitro as a potential candidate for in vivo administration. NPs were created by a phase-separation technique that did not require toxic/protein-denaturing solvents or harsh agitation techniques and encapsulated GM-CSF in a more stable precipitated form. NP sizes were within 200 nm for enhanced permeability and retention (EPR) effect with negative zeta potentials, spherical morphology, and high entrapment efficiencies. The optimal formulation was identified by sustained release of approximately 70% of loaded GM-CSF over 24 h, alongside an average size of 143 ± 35 nm and entrapment efficiency of 84 ± 5%. These NPs were successfully freeze-dried in 5% (w/v) hydroxypropyl-ß-cyclodextrin for long-term storage and further characterized. Bioactivity of released GM-CSF was determined by observing GM-CSF receptor activation on murine monocytes and remained fully intact. NPs were not cytotoxic to murine bone marrow-derived macrophages (BMDMs) at concentrations up to 1 mg/mL as determined by MTT and trypan blue exclusion assays. Lastly, NP components generated no significant transcription of inflammation-regulating genes from BMDMs compared to IFNγ+LPS "M1" controls. This report lays the preliminary groundwork to validate in vivo studies with GM-CSF-loaded PLGA/PEG-PLGA NPs for tumor immunomodulation. Overall, these data suggest that in vivo delivery will be well tolerated.


Assuntos
Fator Estimulador de Colônias de Granulócitos e Macrófagos/síntese química , Macrófagos/efeitos dos fármacos , Nanopartículas/química , Poliésteres/síntese química , Polietilenoglicóis/síntese química , Animais , Antineoplásicos/administração & dosagem , Antineoplásicos/síntese química , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Relação Dose-Resposta a Droga , Composição de Medicamentos , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/administração & dosagem , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacocinética , Humanos , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Nanopartículas/administração & dosagem , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Poliésteres/administração & dosagem , Poliésteres/farmacocinética , Polietilenoglicóis/administração & dosagem , Polietilenoglicóis/farmacocinética
9.
J Org Chem ; 85(16): 10388-10398, 2020 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-32698583

RESUMO

Stable tetrathiatriarylmethyl radicals have significantly contributed to the recent progress in biomedical electron paramagnetic resonance (EPR) due to their unmatched stability in biological media and long relaxation times. However, the lipophilic core of the most commonly used structure (Finland trityl) is responsible for its interaction with plasma biomacromolecules, such as albumin, and self-aggregation at high concentrations and/or low pH. While Finland trityl is generally considered inert toward many reactive radical species, we report that sulfite anion radical efficiently substitutes the three carboxyl moieties of Finland trityl with a high rate constant of 3.53 × 108 M-1 s-1, leading to a trisulfonated Finland trityl radical. This newly synthesized highly hydrophilic trityl radical shows an ultranarrow linewidth (ΔBpp = 24 mG), a lower affinity for albumin than Finland trityl, and a high aqueous solubility even at acidic pH. Therefore, this new tetrathiatriarylmethyl radical can be considered as a superior spin probe in comparison to the widely used Finland trityl. One of its potential applications was demonstrated by in vivo mapping oxygen in a mouse model of breast cancer. Moreover, we showed that one of the three sulfo groups can be easily substituted with S-, N-, and P-nucleophiles, opening access to various monofunctionalized sulfonated trityl radicals.


Assuntos
Oxigênio , Compostos de Tritil , Animais , Espectroscopia de Ressonância de Spin Eletrônica , Radicais Livres , Interações Hidrofóbicas e Hidrofílicas , Camundongos
10.
Analyst ; 145(9): 3236-3244, 2020 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-32134072

RESUMO

The partial pressure of oxygen (pO2) and the extracellular pH in the tumour microenvironment are essential parameters for understanding the physiological state of a solid tumour. Also, phosphate-containing metabolites are involved in energy metabolism, and interstitial inorganic phosphate (Pi) is an informative marker for tumour growth. This article describes the simultaneous mapping of pO2, pH and Pi using 750 MHz continuous-wave (CW) electron paramagnetic resonance (EPR) and a multifunctional probe, monophosphonated trityl radical p1TAM-D. The concept was demonstrated by acquiring three-dimensional (3D) maps of pO2, pH and Pi for multiple solution samples. This was made possible by combining a multifunctional radical probe, fast CW-EPR spectral acquisition, four-dimensional (4D) spectral-spatial image reconstruction, and spectral fitting. The experimental results of mapping pO2, pH and Pi suggest that the concept of simultaneous mapping using EPR is potentially applicable for the multifunctional measurements of a mouse tumour model.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/química , Fosfatos/química , Animais , Modelos Animais de Doenças , Concentração de Íons de Hidrogênio , Camundongos , Sondas Moleculares/química , Neoplasias/química , Neoplasias/metabolismo , Neoplasias/patologia , Oxigênio/metabolismo , Pressão Parcial , Fosfatos/metabolismo , Razão Sinal-Ruído
11.
Angew Chem Int Ed Engl ; 59(38): 16451-16454, 2020 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-32542924

RESUMO

A stable triarylmethyl spin probe whose electron paramagnetic resonance (EPR) spectrum is highly sensitive to molecular tumbling is reported. The strong anisotropy of the hyperfine coupling tensor with the central carbon of a 13 C1 -labeled triarylmethyl radical enables the measurement of the probe rotational correlation time with applications to measure microviscosity and molecular dynamics.


Assuntos
Metano/análogos & derivados , Isótopos de Carbono , Espectroscopia de Ressonância de Spin Eletrônica , Metano/química , Simulação de Dinâmica Molecular , Estrutura Molecular
12.
Bioorg Med Chem Lett ; 29(14): 1756-1760, 2019 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-31129052

RESUMO

Tetrathiatriarylmethyl (TAM) radicals represent soluble paramagnetic probes for biomedical electron paramagnetic resonance (EPR)-based spectroscopy and imaging. There is an increasing demand in the development of multifunctional, biocompatible and targeted trityl probes hampered by the difficulties in derivatization of the TAM structure. We proposed a new straightforward synthetic strategy using click chemistry for the covalent conjugation of the TAM radical with a water-soluble biocompatible carrier exemplified here by dextran. A set of dextran-grafted probes varied in the degrees of Finland trityl radical loading and dextran modification by polyethelene glycol has been synthesized. The EPR spectrum of the optimized macromolecular probe exhibits a single narrow line with high sensitivity to oxygen and has advantages over the unbound Finland trityl of being insensitive to interactions with albumin. In vivo EPR imaging of tissue oxygenation performed in breast tumor-bearing mouse using dextran-grafted probe demonstrates its utility for preclinical oximetric applications.


Assuntos
Dextranos/uso terapêutico , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Compostos de Tritil/uso terapêutico , Dextranos/farmacologia , Estrutura Molecular , Compostos de Tritil/farmacologia
13.
Angew Chem Int Ed Engl ; 57(36): 11701-11705, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-30003653

RESUMO

Enzyme activities are well established biomarkers of many pathologies. Imaging enzyme activity directly in vivo may help to gain insight into the pathogenesis of various diseases but remains extremely challenging. In this communication, we report the use of EPR imaging (EPRI) in combination with a specially designed paramagnetic enzymatic substrate to map alkaline phosphatase activity with a high selectivity, thereby demonstrating the potential of EPRI to map enzyme activity.


Assuntos
Fosfatase Alcalina/análise , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Fosfatase Alcalina/metabolismo , Linhagem Celular Tumoral , Ensaios Enzimáticos/métodos , Humanos , Neoplasias/enzimologia , Neoplasias/metabolismo , Fosforilação , Especificidade por Substrato
14.
Anal Chem ; 89(9): 4758-4771, 2017 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-28363027

RESUMO

This Feature overviews the basic principles of using stable organic radicals involved in reversible exchange processes as functional paramagnetic probes. We demonstrate that these probes in combination with electron paramagnetic resonance (EPR)-based spectroscopy and imaging techniques provide analytical tools for quantitative mapping of critical parameters of local chemical microenvironment. The Feature is written to be understandable to people who are laymen to the EPR field in anticipation of future progress and broad application of these tools in biological systems, especially in vivo, over the next years.


Assuntos
Microambiente Celular/fisiologia , Radicais Livres/química , Óxidos de Nitrogênio/química , Compostos de Tritil/química , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos
15.
Magn Reson Med ; 77(6): 2438-2443, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-27364733

RESUMO

PURPOSE: The ability to assess the extracellular pH (pHe) is an important issue in oncology, because extracellular acidification is associated with tumor aggressiveness and resistance to cytotoxic therapies. In this study, a stable triphosphonated triarylmethyl (TPTAM) radical was qualified as a pHe electron paramagnetic resonance (EPR) molecular reporter. METHODS: Calibration of hyperfine splitting as a function of pH was performed using a 1.2-GHz EPR spectrometer. Gadolinium-diethylenetriamine pentaacetic acid (Gd-DTPA) was used as an extracellular paramagnetic broadening agent to assess the localization of TPTAM when incubated with cells. In vivo EPR pH-metry was performed in MDA, SiHa, and TLT tumor models and in muscle. Bicarbonate therapy was used to modulate the tumor pHe. EPR measurements were compared with microelectrode readouts. RESULTS: The hyperfine splitting of TPTAM was strongly pH-dependent around the pKa of the probe (pKa = 6.99). Experiments with Gd-DTPA demonstrated that TPTAM remained in the extracellular compartment. pHe was found to be more acidic in the MDA, SiHa, and TLT tumor models compared with muscle. Treatment of animals by bicarbonate induced an increase in pHe in tumors: similar variations in pHe were found when using in vivo EPR or invasive microelectrodes measurements. CONCLUSION: This study demonstrates the potential usefulness of TPTAM for monitoring pHe in tumors. Magn Reson Med 77:2438-2443, 2017. © 2016 International Society for Magnetic Resonance in Medicine.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica/métodos , Radicais Livres/química , Concentração de Íons de Hidrogênio , Técnicas de Sonda Molecular , Sondas Moleculares/química , Neoplasias Experimentais/química , Neoplasias Experimentais/diagnóstico , Algoritmos , Animais , Humanos , Células K562 , Masculino , Camundongos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
16.
Bioorg Med Chem Lett ; 26(7): 1742-4, 2016 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-26923698

RESUMO

Stable triarylmethyl radicals are ideal spin labels used for biomedical electron paramagnetic resonance applications. Previously reported structures exhibit polar charged functions for water solubilization preventing them from crossing the cell membrane. We report the synthesis of a triarylmethyl radical conjugated to poly-arginine peptide allowing intracellular delivery of the paramagnetic label.


Assuntos
Espectroscopia de Ressonância de Spin Eletrônica , Metano/análogos & derivados , Peptídeos/síntese química , Marcadores de Spin/síntese química , Linhagem Celular Tumoral , Humanos , Metano/síntese química , Metano/química , Metano/farmacocinética , Peptídeos/química , Peptídeos/farmacocinética
17.
Free Radic Biol Med ; 213: 11-18, 2024 03.
Artigo em Inglês | MEDLINE | ID: mdl-38218552

RESUMO

The monitoring of acidosis and hypoxia is crucial because both factors promote cancer progression and impact the efficacy of anti-cancer treatments. A phosphonated tetrathiatriarylmethyl (pTAM) has been previously described to monitor both parameters simultaneously, but the sensitivity to tackle subtle changes in oxygenation was limited. Here, we describe an innovative approach combining the pTAM radical and lithium phthalocyanine (LiPc) crystals to provide sensitive simultaneous measurements of extracellular pH (pHe) and pO2. Both parameters can be measured simultaneously as both EPR spectra do not overlap, with a gain in sensitivity to pO2 variations by a factor of 10. This procedure was applied to characterize the impact of carbogen breathing in a breast cancer 4T1 model as a proof-of-concept. No significant change in pHe and pO2 was observed using pTAM alone, while LiPc detected a significant increase in tumor oxygenation. Interestingly, we observed that pTAM systematically overestimated the pO2 compared to LiPc. In addition, we analyzed the impact of an inhibitor (UK-5099) of the mitochondrial pyruvate carrier (MPC) on the tumor microenvironment. In vitro, the exposure of 4T1 cells to UK-5099 for 24 h induced a decrease in pHe and oxygen consumption rate (OCR). In vivo, a significant decrease in tumor pHe was observed in UK-5099-treated mice, while there was no change for mice treated with the vehicle. Despite the change observed in OCR, no significant change in tumor oxygenation was observed after the UK-5099 treatment. This approach is promising for assessing in vivo the effect of treatments targeting tumor metabolism.


Assuntos
Acrilatos , Indóis , Neoplasias , Compostos Organometálicos , Oxigênio , Camundongos , Animais , Espectroscopia de Ressonância de Spin Eletrônica/métodos , Oxigênio/metabolismo , Concentração de Íons de Hidrogênio , Microambiente Tumoral
18.
J Magn Reson ; 347: 107363, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-36620971

RESUMO

Triarylmethyl (TAM)-based labels, while still underutilized, are a powerful class of labels for pulsed-Electron Spin Resonance (ESR) distance measurements. They feature slow relaxation rates for long-lasting signals, high stability for cellular experiments, and narrow spectral features for efficient excitation of the spins. However, the typical narrow line shape limits the available distance measurements to only single-frequency experiments, such as Double Quantum Coherence (DQC) and Relaxation Induced Dipolar Modulation Enhancement (RIDME), which can be complicated to perform or hard to process. Therefore, widespread usage of TAM labels can be enhanced by the use of Double Electron-Electron Resonance (DEER) distance measurements. In this work, we developed a new spin label, 13C1-mOX063-d24, with a 13C isotope as the radical center. Due to the resolved hyperfine splitting, the spectrum is sufficiently broadened to permit DEER-based experiments at Q-band spectrometers. Additionally, this new label can be incorporated orthogonally with Cu(II)-based protein label. The orthogonal labeling scheme enables DEER distance measurement at X-band frequencies. Overall, the new trityl label allows for DEER-based distance measurements that complement existing TAM-label DQC and RIDME experiments.

19.
Mol Imaging Biol ; 2023 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-37610610

RESUMO

PURPOSE: Hypoxia and acidosis are recognized tumor microenvironment (TME) biomarkers of cancer progression. Alterations in cancer redox status and metabolism are also associated with elevated levels of intracellular glutathione (GSH) and interstitial inorganic phosphate (Pi). This study aims to evaluate the capability of these biomarkers to discriminate between stages and inform on a switch to malignancy. PROCEDURES: These studies were performed using MMTV-PyMT( +) female transgenic mice that spontaneously develop breast cancer and emulate human tumor staging. In vivo assessment of oxygen concentration (pO2), extracellular acidity (pHe), Pi, and GSH was performed using L-band electron paramagnetic resonance spectroscopy and multifunctional trityl and GSH-sensitive nitroxide probes. RESULTS: Profiling of the TME showed significant deviation of measured biomarkers upon tumor progression from pre-malignancy (pre-S4) to the malignant stage (S4). For the combined marker, HOP: (pHe × pO2)/Pi, a value > 186 indicated that the tumors were pre-malignant in 85% of the mammary glands analyzed, and when < 186, they were malignant 42% of the time. For GSH, a value < 3 mM indicated that the tumors were pre-malignant 74% of the time, and when > 3 mM, they were malignant 80% of the time. The only marker that markedly deviated as early as stage 1 (S1) from its value in pre-S1 was elevated Pi, followed by a decrease of pHe and pO2 and increase in GSH at later stages. CONCLUSION: Molecular TME profiling informs on alteration of tumor redox and metabolism during tumor staging. Early elevation of interstitial Pi at S1 may reflect tumor metabolic alterations that demand elevated phosphorus supply in accordance with the high rate growth hypothesis. These metabolic changes are supported by the following decrease of pHe due to a high tumor reliance on glycolysis and increase of intracellular GSH, a major intracellular redox buffer. The appreciable decrease in TME pO2 was observed only at malignant S4, apparently as a consequence of tumor mass growth and corresponding decrease in perfusion efficacy and increase in oxygen consumption as the tumor cells proliferate.

20.
Mol Imaging Biol ; 2023 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-37870648

RESUMO

PURPOSE: Progress toward developing a novel radiocontrast agent for determining pO2 in tumors in a clinical setting is described. The imaging agent is designed for use with electron paramagnetic resonance imaging (EPRI), in which the collision of a paramagnetic probe molecule with molecular oxygen causes a spectroscopic change which can be calibrated to give the real oxygen concentration in the tumor tissue. PROCEDURES: The imaging agent is based on a nanoscaffold of aluminum hydroxide (boehmite) with sizes from 100 to 200 nm, paramagnetic probe molecule, and encapsulation with a gas permeable, thin (10-20 nm) polymer layer to separate the imaging agent and body environment while still allowing O2 to interact with the paramagnetic probe. A specially designed deuterated Finland trityl (dFT) is covalently attached on the surface of the nanoparticle through 1,3-dipolar addition of the alkyne on the dFT with an azide on the surface of the nanoscaffold. This click-chemistry reaction affords 100% efficiency of the trityl attachment as followed by the complete disappearance of the azide peak in the infrared spectrum. The fully encapsulated, dFT-functionalized nanoparticle is referred to as RADI-Sense. RESULTS: Side-by-side in vivo imaging comparisons made in a mouse model made between RADI-Sense and free paramagnetic probe (OX-071) showed oxygen sensitivity is retained and RADI-Sense can create 3D pO2 maps of solid tumors CONCLUSIONS: A novel encapsulated nanoparticle EPR imaging agent has been described which could be used in the future to bring EPR imaging for guidance of radiotherapy into clinical reality.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA