Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 42
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(52): e2302761120, 2023 Dec 26.
Artigo em Inglês | MEDLINE | ID: mdl-38109527

RESUMO

For degradation of ß-lactam antibiotics pollution in waters, the strained ß-lactam ring is the most toxic and resistant moiety to biodegrade and redox-chemically treat among their functional groups. Hydrolytically opening ß-lactam ring with Lewis acid catalysts has long been recognized as a shortcut, but at room temperature, such hydrolysis is too slow to be deployed. Here, we found when Cu2+ was immobilized on imine-linked COF (covalent organic framework) (Cu2+/Py-Bpy-COF, Cu2+ load is 1.43 wt%), as-prepared composite can utilize the light irradiation (wavelength range simulated sunlight) to in situ heat anchored Cu2+ Lewis acid sites through an excellent photothermal conversion to open the ß-lactam ring followed by a desired full-decarboxylation of hydrolysates. Under 1 W/cm2 simulated sunlight, Cu2+/Py-Bpy-COF powders placed in a microfiltration membrane rapidly cause a temperature rising even to ~211.7 °C in 1 min. It can effectively hydrolyze common ß-lactam antibiotics in waters and even antibiotics concentration is as high as 1 mM and it takes less than 10 min. Such photo-heating hydrolysis rate is ~24 times as high as under dark and ~2 times as high as Cu2+ homogenous catalysis. Our strategy significantly decreases the interference from generally coexisting common organics in waters and potential toxicity concerns of residual carboxyl groups in hydrolysates and opens up an accessible way for the settlement of ß-lactam antibiotics pollutants by the only energy source available, the sunlight.


Assuntos
Poluentes Ambientais , Antibióticos beta Lactam , Temperatura Alta , Domínio Catalítico , Ácidos de Lewis , Antibacterianos/metabolismo , beta-Lactamas , Monobactamas
2.
J Proteome Res ; 23(9): 4005-4013, 2024 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-39171377

RESUMO

Ribosome profiling and mass spectrometry have revealed thousands of previously unannotated small and alternative open reading frames (sm/alt-ORFs) that are translated into micro/alt-proteins in mammalian cells. However, their prevalence across human tissues and biological roles remains largely undefined. The placenta is an ideal model for identifying unannotated microproteins and alt-proteins due to its considerable protein diversity that is required to sustain fetal development during pregnancy. Here, we profiled unannotated microproteins and alt-proteins in human placental tissues from preeclampsia patients or healthy individuals by proteomics, identified 52 unannotated microproteins or alt-proteins, and demonstrated that five microproteins can be translated from overexpression constructs in a heterologous cell line, although several are unstable. We further demonstrated that one microprotein, XRCC6P1, associates with translation initiation factor eIF3 and negatively regulates translation when exogenously overexpressed. Thus, we revealed a hidden sm/alt-ORF-encoded proteome in the human placenta, which may advance the mechanism studies for placenta development as well as placental disorders such as preeclampsia.


Assuntos
Placenta , Pré-Eclâmpsia , Biossíntese de Proteínas , Proteômica , Humanos , Gravidez , Feminino , Placenta/metabolismo , Proteômica/métodos , Pré-Eclâmpsia/metabolismo , Pré-Eclâmpsia/genética , Fases de Leitura Aberta , Fator de Iniciação 3 em Eucariotos/metabolismo , Fator de Iniciação 3 em Eucariotos/genética , Proteoma/análise , Proteoma/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas de Ligação a DNA/genética , Micropeptídeos
3.
Chemistry ; : e202402102, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087665

RESUMO

In photocatalysis, the resulted heat by the relaxation of most of incident light no longer acts as the industrially favorite driving force back to the target photo-reaction due to more or less the negative relation between photocatalytic efficiency and temperature. Here, we reported a visible light-sensitized protocol that completely reversed the negatively temperature-dependent efficiency in photo-driven CO2 methanation with saturated water vapor. Uniform Pt/N-TiO2/PDI self-assembly material decisively injects the excited electron of PDI sensitizer into N-TiO2 forming Ti-H hydride which is crucially temperature-dependent nucleophilic species to dominate CO2 methanation, rather than conventionally separated and trapped electrons on the conductor band. Meanwhile, the ternary composite lifts itself temperature from room temperature to 305.2 °C within 400s only by the failure excitation upon simulated sunlight of 2.5 W/cm2, and smoothly achieves CO2 methanation with a record number of 4.98 mmol g-1 h-1 rate, compared to less than 0.02 mmol g-1 h-1 at classic Pt/N-TiO2/UV photocatalysis without PDI sensitization. This approach can reuse ~53.9% of the relaxed heat energy from the incident light thereby allow high-intensity incident light as strong as possible within a flowing photo-reactor, opening the most likely gateways to industrialization.

4.
Psychol Sci ; 34(3): 313-325, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36473146

RESUMO

Repeatedly exercising a perceptual ability usually leads to improvement, yet it is unclear whether the mechanisms supporting the same perceptual learning could be flexibly adjusted according to the training settings. Here, we trained adult observers in an orientation-discrimination task at either a single (focused) retinal location or multiple (distributed) retinal locations. We examined the observers' discriminability (N = 52) and bias (N = 20) in orientation perception at the trained and untrained locations. The focused and distributed training enhanced orientation discriminability by the same amount and induced a bias in perceived orientation at the trained locations. Nevertheless, the distributed training promoted location generalization of both practice effects, whereas the focused training resulted in specificity. The two training tactics also differed in long-term retention of the training effects. Our results suggest that, depending on the training settings of the same task, the same discrimination learning could differentially engage location-specific and location-invariant representations of the learned stimulus feature.


Assuntos
Aprendizagem , Percepção Visual , Adulto , Humanos , Cidade de Roma , Aprendizagem por Discriminação , Generalização Psicológica
5.
Macromol Rapid Commun ; 44(5): e2200755, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36433758

RESUMO

The facile and rapid fabrication of oriented porous polymers is crucial for flexible pressure sensors. Herein, a pressure sensor is developed based on oriented porous polydimethylsiloxane (PDMS) composites for detecting human motion and identifying joint motion patterns. The oriented porous PDMS composite is first constructed through thiol-ene click chemistry and directional freezing within only 30 min, then fabricated by interfacial in situ polymerization of dopamine and pyrrole to generate robust interfaces. As a result, the as-prepared oriented porous PDMS composite is assembled into a pressure sensor that shows potential applications in pressure and human motion detection. Interestingly, a sensor assembled by orthogonally stacking the PDMS composites can be used for joint motion pattern recognition with potential monitoring of football motion due to their directional structures. This facile strategy coupled with the oriented porous structure is expected to help design advanced wearable electronic devices.


Assuntos
Dispositivos Eletrônicos Vestíveis , Humanos , Porosidade , Movimento (Física) , Polímeros , Dimetilpolisiloxanos/química
6.
Small ; 18(13): e2106558, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35119204

RESUMO

The N6-methyladenosine (m6 A) demethylase FTO plays an oncogenic role in acute myeloid leukemia (AML). Despite the promising recent progress for developing some small-molecule FTO inhibitors, the clinical potential remains limited due to mild biological function, toxic side effects and low sensitivity and/or specificity to leukemic stem cells (LSCs). Herein, FTO inhibitor-loaded GSH-bioimprinted nanocomposites (GNPIPP12MA) are developed that achieves targeting of the FTO/m6 A pathway synergized GSH depletion for enhancing anti-leukemogenesis. GNPIPP12MA can selectively target leukemia blasts, especially LSCs, and induce ferroptosis by disrupting intracellular redox status. In addition, GNPIPP12MA increases global m6 A RNA modification and decreases the transcript levels in LSCs. GNPIPP12MA augments the efficacy of the PD-L1 blockade by increasing the infiltration of cytotoxic T cells for enhanced anti-leukemia immunity. This study offers insights for a GSH-bioimprinted nanoplatform targeting m6 A RNA methylation as a synergistic treatment strategy against cancer stem cells that may translate to clinical applications.


Assuntos
Dioxigenase FTO Dependente de alfa-Cetoglutarato , Nanopartículas , Adenosina/análogos & derivados , Dioxigenase FTO Dependente de alfa-Cetoglutarato/genética , Dioxigenase FTO Dependente de alfa-Cetoglutarato/metabolismo , Glutationa , Células-Tronco Neoplásicas , RNA Mensageiro/genética
7.
Small ; 18(12): e2107437, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35174965

RESUMO

CaZnOS-based semiconductors are the only series of material system discovered that can simultaneously realize a large number of dopant elements to directly fulfill the highly efficient full-spectrum functionality from ultraviolet to near-infrared under the same force/pressure. Nevertheless, owing to the high agglomeration of the high temperature solid phase manufacturing process, which is unable to control the crystal morphology, the application progress is limited. Here, the authors report first that CaZnOS-based fine monodisperse semiconductor crystals with various doping ions are successfully synthesized by a molten salt shielded method in an air environment. This method does not require inert gas ventilation, and therefore can greatly reduce the synthesis cost and more importantly improve the fine control of the crystal morphology, along with the crystals' dispersibility and stability. These doped semiconductors can not only realize different colors of mechanical-to-optical energy conversion, but also can achieve multicolor luminescence under low-dose X-ray irradiation, moreover their intensities are comparable to the commercial NaI:Tl. They can pave the way to the new fields of advanced optoelectronic applications, such as piezophotonic systems, mechanical energy conversion and harvesting devices, intelligent sensors, and artificial skin as well as X-ray applications.

8.
Nano Lett ; 21(13): 5522-5531, 2021 07 14.
Artigo em Inglês | MEDLINE | ID: mdl-34133181

RESUMO

Cell-membrane-coated nanoparticles have emerged as a promising antitumor therapeutic strategy. However, the immunologic mechanism remains elusive, and there are still crucial issues to be addressed including tumor-homing capacity, immune incompatibility, and immunogenicity. Here, we reported a tumor-associated macrophage membrane (TAMM) derived from the primary tumor with unique antigen-homing affinity capacity and immune compatibility. TAMM could deplete the CSF1 secreted by tumor cells in the tumor microenvironment (TME), blocking the interaction between TAM and cancer cells. Especially, after coating TAMM to upconversion nanoparticle with conjugated photosensitizer (NPR@TAMM), NPR@TAMM-mediated photodynamic immunotherapy switched the activation of macrophages from an immunosuppressive M2-like phenotype to a more inflammatory M1-like state, induced immunogenic cell death, and consequently enhanced the antitumor immunity efficiency via activation of antigen-presenting cells to stimulate the production of tumor-specific effector T cells in metastatic tumors. This TAM-membrane-based photodynamic immunotherapy approach offers a new strategy for personalized tumor therapy.


Assuntos
Imunoterapia , Nanopartículas , Macrófagos , Fármacos Fotossensibilizantes/uso terapêutico , Microambiente Tumoral
9.
Angew Chem Int Ed Engl ; 58(48): 17255-17259, 2019 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-31523889

RESUMO

Thermal quenching of photoluminescence represents a significant obstacle to practical applications such as lighting, display, and photovoltaics. Herein, a novel strategy is established to enhance upconversion luminescence at elevated temperatures based on the use of negative thermal expansion host materials. Lanthanide-doped orthorhombic Yb2 W3 O12 crystals are synthesized and characterized by in situ X-ray diffraction and photoluminescence spectroscopy. The thermally induced contraction and distortion of the host lattice is demonstrated to enhance the collection of excitation energy by activator ions. When the temperature is increased from 303 to 573 K, a 29-fold enhancement of green upconversion luminescence in Er3+ activators is achieved. Moreover, the temperature dependence of the upconversion luminescence is reversible. The thermally enhanced upconversion is developed as a sensitive ratiometric thermometer by referring to a thermally quenched upconversion.

10.
Chemistry ; 24(43): 11185-11192, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29806718

RESUMO

ZIF-8 nanoribbons, with tunable morphology and pore structure, were synthesized by using the tri-block co-polymer Pluronic F127 as a soft template. The as-synthesized ZIF-8 nanoribbons were converted into carbon nanoribbons by thermal transformation with largely preserved morphology and porosity. The resulting carbon nanoribbons feature both micro- and meso-pores with high surface areas of over 1000 m2 g-1 . In addition, nitrogen-doping in the carbon nanoribbons was achieved, as confirmed by XPS and EELS measurements. The hybrid carbon nanoribbons provide pseudo-capacitance that promotes electrochemical performance, rendering a high specific capacitance of up to 297 F g-1 at a current density of 0.5 A g-1 in a three-electrode system. A long cycle life was also demonstrated by recording a 90.26 % preservation of capacitance after 10 000 cycles of charge-discharge at a current density of 4.0 A g-1 . Furthermore, a symmetrical supercapacitor is fabricated by employing the carbon nanoribbons, which shows good electrochemical performance with respect to energy, power and cycle life.

11.
Phys Chem Chem Phys ; 19(21): 13679-13686, 2017 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-28497134

RESUMO

In this work, the influence of oxygen vacancy defect (OVD) in compact titanium oxide (c-TiO2) on the performance of planar perovskite solar cells (p-PSCs) is investigated, and the possible mechanisms are also proposed. To meet our objective, anatase c-TiO2 thin films with various OVD concentrations are prepared by changing the oxygen flux during the DC magnetron sputtering process and are characterized by the intensity of defect signals in the X-ray photoelectron spectra. We conclude that abundant OVDs can trigger an obviously increased majority carrier accumulation zone at the metal oxide/perovskite interface and enhanced capacitance, thereby greatly deteriorating photogenerated carrier collection efficiency. A detailed analysis of the study results also reveals that the presence of OVD in the bulk and surface of c-TiO2 can slow down electronic carrier transport and lower its electron quasi-Fermi level under illumination, leading to the detrimental charge recombination in p-PSCs. Furthermore, we report a remarkably enhanced p-PSC efficiency via preparing c-TiO2 using high oxygen flux and subsequent ultraviolet ozone treatment. As a consequence, repeatable power conversion efficiency (PCE) is propelled to as high as 16.62%, coupled with negligible hysteresis and increased stability. These results provide a significant implication for further perfecting efficient and stable p-PSCs for their record efficiency.

13.
Biomimetics (Basel) ; 9(8)2024 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-39194467

RESUMO

Inspired by the fact that flying insects improve their power conversion efficiency through resonance, many soft robots driven by dielectric elastomer actuators (DEAs) have achieved optimal performance via first-order modal resonance. Besides first-order resonance, DEAs contribute to multiple innovative functions such as pumps that can make sounds when using multimodal resonances. This study presents the multimodal resonance of a rectangular planar DEA (RPDEA) with a central mass bias. Using a combination of experiments and finite element modeling (FEM), it was discerned that under a prestretch of 1.0 × 1.1, the first-, second-, and third-order resonances corresponded to vertical vibration, rotation along the long axis, and rotation along the short axis, respectively. In first-order resonance, superharmonic, harmonic, and subharmonic responses were activated, while only harmonic and subharmonic responses were observed in the second- and third-order resonances. Further investigations revealed that prestretching tended to inhibit third-order resonance but could elevate the resonance frequencies of the first and second orders. Conveniently, both the experimental and FEM results showed that the frequencies and amplitudes of the multimodal resonances could be tuned by adjusting the amplitudes of the excitation signals, referring to the direct current (DC) amplitude and alternating current (AC) amplitude, respectively. Moreover, instead of linear vibration, we found another novel approach that used rotation vibration to drive a robot with soft bristles via hopping locomotion, showcasing a higher speed compared to the first-order resonance in our robot.

14.
Adv Mater ; 36(2): e2307848, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37925612

RESUMO

Photon avalanche has received continuous attention owing to its superior nonlinear dynamics and promising advanced applications. However, its impact is limited due to the intrinsic energy levels as well as the harsh requirements for the composites and sizes of doped materials. Here, with a universal mechanism named tandem photon avalanche (TPA), giant optical nonlinear response up to 41st-order in erbium ions, one of the most important lanthanide emitters, has been achieved on the nanoscale through interfacial energy transfer process. After capturing energy directly from the avalanched energy state 3 H4 of Tm3+ (800-nm emission), erbium ions also exhibit bright green and red PA emissions with intensities comparable to that of Tm3+ at a low excitation threshold (7.1 kWcm-2 ). Using the same strategy, effective PA looping cycles are successfully activated in Ce3+ and Ho3+ . Additionally, Yb3+ -mediated networks are constructed to further propagate PA effects to lowly-doped Tm3+ , enabling 475-nm PA emission. The newly proposed TPA strategy provides a facile route for generating photon avalanche not only from erbium ions but also from various emitters in multilayered core-shell nanoparticles.

15.
Zhongguo Yi Xue Ke Xue Yuan Xue Bao ; 35(6): 623-7, 2013 Dec.
Artigo em Zh | MEDLINE | ID: mdl-24382239

RESUMO

OBJECTIVE: To investigate the potential differentiation of human mesenchymal stem cells(MSCs)into epithelium-like cells by an in vitro co-culture method. METHODS: The human conjunctival epithelium was obtained by digestion with dispase2, and the MSCs were isolated by density gradient centrifugalization. All cells were identified according to their morphologies and cell-surface antigen profiles by immunocytochemical analysis. The MSCs underwent co-culture with conjunctival epithelium in the manner without cell-to-cell contract. The morphological characterizes of cells were observed under contrast microscope, and the cytokeratin-4 expressions of the differentiated cells were identified by immunocytochemistry staining, reverse transcriptase polymerase chain reaction(RT-PCR), and Western blotting. RESULTS: Immunocytochemistry showed that positive expression of CD29 and negative expression of CD34 in the in vitro cultured MSCs. Cytokeratins4(CK4)was positively expressed in the human conjunctival epithelium. After co-cultured with conjunctival epithelial for 10 days, CK4 was detected in differentiated cells by immunocytochemistry, RT-PCR, and Western blotting. CONCLUSION: MSCs can differentiate into epithe1ium-like cells after having been co-cultured with human conjunctival epithelium.


Assuntos
Diferenciação Celular , Técnicas de Cocultura/métodos , Células-Tronco Mesenquimais/fisiologia , Células Cultivadas , Humanos , Reação em Cadeia da Polimerase Via Transcriptase Reversa
16.
Mater Today Bio ; 23: 100796, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37766898

RESUMO

Burgeoning is an evolution from conventional photodynamic therapy (PDT). Thus, sonodynamic therapy (SDT) regulated by nanoparticles (NPs) possesses multiple advantages, including stronger penetration ability, better biological safety, and not reactive oxygen species (ROS)-dependent tumor-killing effect. However, the limitation to tumor inhibition instead of shrinkage and the incapability of eliminating metastatic tumors hinder the clinical potential for SDT. Fortunately, immune checkpoint blockade (ICB) can revive immunological function and induce a long-term immune memory against tumor rechallenges. Hence, synergizing NPs-based SDT with ICB can provide a promising therapeutic outcome for solid tumors. Herein, we briefly reviewed the progress in NPs-based SDT and ICB therapy. We highlighted the synergistic anti-tumor mechanisms and summarized the representative preclinical trials on SDT-assisted immunotherapy. Compared to other reviews, we provided comprehensive and unique perspectives on the innovative sonosensitizers in each trial. Moreover, we also discussed the current challenges and future corresponding solutions.

17.
Micromachines (Basel) ; 14(3)2023 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-36985026

RESUMO

Confined space searches such as pipeline inspections are widely demanded in various scenarios, where lightweight soft robots with inherent compliance to adapt to unstructured environments exhibit good potential. We proposed a tubular soft robot with a simple structure of a spring-rolled dielectric elastomer (SRDE) and compliant passive bristles. Due to the compliance of the bristles, the proposed robots can work in pipelines with inner diameters both larger and smaller than the one of the bristles. Firstly, the nonlinear dynamic behaviors of the SRDE were investigated experimentally. Then, we fabricated the proposed robot with a bristle diameter of 19 mm and then studied its performance in pipelines on the ground with inner diameters of 18 mm and 20 mm. When the pipeline's inner diameter was less than the outer diameter of the bristles, the bristles remained in the state of bending and the robot locomotion is mainly due to anisotropic friction (1.88 and 0.88 body lengths per second horizontally and vertically, respectively, in inner diameter of 18 mm and 0.06 body length per second in that of 16 mm). In the case of the pipeline with the larger inner diameter, the bristles were not fully constrained, and a small bending moment applied on the lower bristle legs contributed to the robot's locomotion, leading to a high velocity (2.78 body lengths per second in 20 mm diameter acrylic pipe). In addition, the robot can work in varying geometries, such as curving pipes (curve radius ranges from 0.11 m to 0.31 m) at around two body lengths per second horizontally and on the ground at 3.52 body lengths per second, showing promise for pipeline or narrow space inspections.

18.
Adv Mater ; 35(16): e2210895, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36757878

RESUMO

Epigenetic-alterations-mediated antigenicity reducing in leukemic blasts (LBs) is one of the critical mechanisms of immune escape and resistance to T-cell-based immunotherapy. Herein, a bimetallic metal-organic framework (MOF)-based biomimetic nanoplatform (termed as AFMMB) that consists of a DNA hypomethylating agent, a leukemia stem cell (LSC) membrane, and pro-autophagic peptide is fabricated. These AFMMB particles selectively target not only LBs but also LSCs due to the homing effect and immune compatibility of the LSC membrane, and induce autophagy by binding to the Golgi-apparatus-associated protein. The autophagy-triggered dissolution of AFMMB releases active components, resulting in the restoration of the stimulator of interferon genes pathway by inhibiting DNA methylation, upregulation of major histocompatibility complex class-I molecules, and induction of RNA-methylation-mediated decay of programmed cell death protein ligand transcripts. These dual epigenetic changes eventually enhance T-cell-mediated immune response due to increased antigenicity of leukemic cells. AFMMB also can suppress growth and metastases of solid tumor, which was suggestive of a pan-cancer effect. These findings demonstrate that AFMMB may serve as a promising new nanoplatform for dual epigenetic therapy against cancer and warrants clinical validation.


Assuntos
Leucemia Mieloide Aguda , Estruturas Metalorgânicas , Humanos , Estruturas Metalorgânicas/uso terapêutico , Metilação de DNA , RNA/metabolismo , Biomimética , Desmetilação do DNA , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/patologia
19.
Biomed Res Int ; 2023: 1107866, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36743514

RESUMO

Background: LHON is a progressive disease with early disease onset and male predominance, usually causing devastating visual loss to patients. These systematic review and meta-analysis are aimed at summarizing epidemiology, disease onset and progression, visual recovery, risk factors, and treatment options of Leber's hereditary optic neuropathy (LHON) with mitochondrial DNA mutation G11778A from current evidence. Methods: The PubMed database was examined from its inception date to November 2021. Data from included studies were pooled with either a fixed-effects model or a random-effects model, depending on the results of heterogeneity tests. Sensitivity analysis was conducted to test the robustness of results. Results: A total of 41 articles were included in the systematic review for qualitative analysis, and 34 articles were included for quantitative meta-analysis. The pooled estimate of proportion of G11778A mutation among the three primary mutations of mitochondrial DNA (G11778A, G3460A, and T14484C) for LHON was 73% (95% CI: 67% and 79%), and the LHON patients with G11778A mutation included the pooled male ratio estimate of 77% (76% and 79%), the pooled age estimate of 35.3 years (33.2 years and 37.3 years), the pooled onset age estimate of 22.1 years (19.7 years and 24.6 years), the pooled visual acuity estimate of 1.4 LogMAR (1.2 LogMAR and 1.6 LogMAR), and the pooled estimate of spontaneous visual recovery rate (in either 1 eye) of 20% (15% and 27%). Conclusions: The G11778A mutation is a prevalent mitochondrial DNA mutation accounting for over half of LHON cases with three primary mutations. Spontaneous visual recovery is rare, and no effective treatment is currently available.


Assuntos
Atrofia Óptica Hereditária de Leber , Adulto , Feminino , Humanos , Masculino , Adulto Jovem , DNA Mitocondrial/genética , Mitocôndrias/genética , Mutação/genética , Atrofia Óptica Hereditária de Leber/genética , Linhagem
20.
Cancer Med ; 12(3): 2333-2344, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35894763

RESUMO

BACKGROUND: Pyrotinib, a novel irreversible epidermal growth factor receptor 2 (EGFR)/HER2 dual tyrosine kinase inhibitor, has shown promising antitumor efficacy with tolerable toxicity in HER2-positive metastatic breast cancer (MBC) in several clinical trials. However, the clinical trials do not usually well reflect the patients in real clinical settings. Despite several small-sample studies in real world, the data on pyrotinib as first-line and third-or-later-line treatment and the efficacy comparison of pyrotinib combined with different regimens are still lacking. Therefore, this study aimed to investigate the efficacy and safety of pyrotinib for the HER2-positive MBC in real world to replenish more comprehensive data. METHODS: A total of 172 HER2-positive MBC patients treated with pyrotinib-based therapy were recruited from multiple centers in nonclinical trial settings from September 2017 to June 2020. RESULTS: The median progression-free survival (mPFS) of 172 patients was 8.83 months. The patients, receiving first-line pyrotinib treatment, had the longest mPFS (20.93 months) compared with those receiving second-line (8.67 months, p = 0.0339) and third-or-later-line (7.13 months, p = 0.0075) treatments, respectively. Prior treatment with lapatinib (p = 0.012) and site of metastasis (visceral vs. nonvisceral) (p = 0.033) were the independent prognostic factors for PFS. The prior treatment with lapatinib compared with lapatinib-native treatment (5.96 vs. 10.97 months, p = 0.0036) and those with visceral metastasis compared with nonvisceral metastasis (8.40 vs. 23.70 months, p = 0.0138) had worse mPFS. Among 146 patients evaluated for efficacy, 2.1%, 58.9%, and 32.9% showed complete response, partial response, and stable disease, respectively. Adverse events occurred in 92.4% of the patients with 33.3% Grade 3 and higher adverse events and diarrhea (57.0%), anemia (44.8%), and leukopenia (40.7%) as the most frequent ones. CONCLUSIONS: Pyrotinib-containing regimen could effectively treat HER2-positive MBC with acceptable toxicity, including the patients who progressed after lapatinib treatment and with brain metastasis.


Assuntos
Neoplasias da Mama , Segunda Neoplasia Primária , Humanos , Feminino , Neoplasias da Mama/patologia , Lapatinib , Trastuzumab , Receptor ErbB-2/metabolismo , Segunda Neoplasia Primária/etiologia , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA