Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
J Ultrasound Med ; 42(12): 2777-2789, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37594990

RESUMO

OBJECTIVES: To distinguish benign and malignant subpleural pulmonary lesions (SPLs) with contrast-enhanced ultrasound (CEUS) and color parametric imaging (CPI), and evaluate the role of CEUS plus CPI in the differential diagnosis of pathological types of SPLs. METHODS: One hundred and thirty-six patients underwent CEUS with a Logiq E9 XD Clear ultrasonic machine equipped with a 3.5- to 5.0-MHz C5-1 transducer in our center were enrolled in our study, including 27 cases of benign lesions and 109 cases of malignant lesions. The ultrasound contrast agent used in this study was SonoVue. CEUS images and CPI of all cases were reviewed and analyzed by the resident and staff radiologist groups separately. RESULTS: With CEUS alone, by both the two groups, the main enhancement pattern of benign SPLs was arborization (P < .001), while centripetal enhancement pattern occurred more frequently in malignant SPLs (P < .001). With CEUS plus CPI, by both the two groups, the main enhancement pattern of benign SPLs was arborization (P < .001), while those of malignant SPLs were centripetal (P < .001) and eccentric (P < .05). The diagnosis performance of CEUS plus CPI was significantly higher than that of CEUS alone in both the resident (area under the curve [AUC] = 0.857 vs 0.677, P < .001) and staff (AUC = 0.866 vs 0.681, P < .001) groups. Moreover, CPI offered remarkable inter-consistency improvements in the enhancement pattern determination between the two groups. CONCLUSION: The CEUS enhancement patterns would provide information of blood perfusion patterns in the differential diagnosis of benign and malignant SPLs. The diagnosis performance could be significantly improved by CEUS plus CPI compared with CEUS alone.


Assuntos
Meios de Contraste , Ultrassom , Humanos , Diagnóstico Diferencial , Ultrassonografia/métodos
2.
Lasers Med Sci ; 38(1): 184, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37578665

RESUMO

The aim of this study is to systematically summarize the available evidence regarding low-level laser therapy (LLLT) speed-up effect on dental alignment in comprehensive orthodontic treatment. An extensive electronic search was conducted in PubMed, ScienceDirect, Cochrane, Web of Science, and Scopus up to February 20, 2023. The Cochrane risk of bias tool and the Newcastle-Ottawa Quality Assessment Form were used by two authors independently to assess the risk of bias (RoB). Statistical analysis was performed by Review Manager 5.3. The eight eligible trials were reviewed and included in qualitative synthesis. Four studies reported the overall time of leveling and alignment (OLAT, days), enabling a synthesizing of the data. The meta-analysis results showed that LLLT significantly reduced the overall time of leveling and alignment compared to control group (MD=-30.36, 95% CI range -41.50 to -19.22, P<0.0001), with moderate heterogeneity (χ2=4.10, P=0.25, I2=27%). Based on the data available, statistically significant evidence with moderate risk of bias suggests that LLLT may have a positive effect on accelerating dental alignment. However, due to the differences in intervention strategy and evaluating method, the conclusions should be interpreted with caution.


Assuntos
Terapia com Luz de Baixa Intensidade , Técnicas de Movimentação Dentária , Fatores de Tempo , Técnicas de Movimentação Dentária/métodos
3.
Int Wound J ; 20(10): 4394-4409, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37438679

RESUMO

Diabetic foot ulcer (DFU), a common intractable chronic complication of diabetes mellitus (DM), has a prevalence of up to 25%, with more than 17% of the affected patients at risk of amputation or even death. Vascular risk factors, including vascular stenosis or occlusion, dyslipidemia, impaired neurosensory and motor function, and skin infection caused by trauma, all increase the risk of DFU in patients with diabetes. Therefore, diabetic foot is not a single pathogenesis. Preclinical studies have contributed greatly to the pathogenesis determination and efficacy evaluation of DFU. Many therapeutic tools are currently being investigated using DFU animal models for effective clinical translation. However, preclinical animal models that completely mimic the pathogenesis of DFU remain unexplored. Therefore, in this review, the preparation methods and evaluation criteria of DFU animal models with three major pathological mechanisms: neuropathy, angiopathy and DFU infection were discussed in detail. And the advantages and disadvantages of various DFU animal models for clinical sign simulation. Furthermore, the current status of vitro models of DFU and some preclinical studies have been transformed into clinical treatment programs, such as medical dressings, growth factor therapy, 3D bioprinting and pre-vascularization, Traditional Chinese Medicine treatment. However, because of the complexity of the pathological mechanism of DFU, the clinical transformation of DFU model still faces many challenges. We need to further optimize the existing preclinical studies of DFU to provide an effective animal platform for the future study of pathophysiology and clinical treatment of DFU.


Assuntos
Diabetes Mellitus , Pé Diabético , Humanos , Pé Diabético/etiologia , Pé Diabético/terapia , Pé Diabético/epidemiologia , Fatores de Risco
4.
Int Wound J ; 2023 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-37818786

RESUMO

Aimed to clarify the effect of quercetin and its derivatives on wound healing in animal experiments. PubMed, Embase, Science Direct, Web of Science, SinoMed, Vip Journal Integration Platform, China National Knowledge Infrastructure and WanFang databases were searched for animal experiments investigating the effect of quercetin and its derivatives on wound healing to April 2023. The Review Manager 5.4 software was used to conduct meta-analysis. Eighteen studies were enrolled in this article. According to the SYRCLE's RoB tool assessment, these studies exposed relatively low methodological quality. It was shown that animals with cutaneous wound receiving quercetin had faster wound healing in wound closure (%) than the control group. Moreover, the difference in efficacy gradually emerged after third day (WMD = 7.13 [5.52, 8.74]), with a peak reached on the tenth day after wounding (WMD = 19.78 [17.82, 21.74]). Subgroup analysis revealed that quercetin for wound closure (%) was independent of the types of rats and mice, wound area and with or without diabetes. Clear conclusion was also shown regarding the external application of quercetin for wound healing (WMD = 17.77 [11.11, 24.43]). A significant reduction in the distribution of inflammatory cells occurred in the quercetin group. Quercetin could increase blood vessel density (WMD = 1.85 [0.68, -3.02]), fibroblast distribution and collagen fraction. Biochemical indicators, including IL-1ß, IL-10, TNF-α, TGF-ß, vascular endothelial growth factor (VEGF), hydroxyproline and alpha-smooth muscle actin (α-SMA), had the consistent results. Quercetin and its derivatives could promote the recovery of cutaneous wound in animals, through inhibiting inflammatory response and accelerating angiogenesis, proliferation of fibroblast and collagen deposition.

5.
Int J Hyperthermia ; 39(1): 517-524, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35311422

RESUMO

OBJECTIVE: To analyze the survival outcomes and prognostic factors of radiofrequency ablation (RFA) for pancreatic adenocarcinoma liver metastasis (PALM). METHODS: Between January 2010 and July 2021, 20 patients (13 males) with an average age of 58.9 ± 11.7 years who underwent RFA for PALM were included. The mean maximum diameter of PALMs was 2.6 ± 1.1 cm (1.0-6.0 cm). Survival curves were built using the Kaplan-Meier method and compared by the log-rank test. Multivariable analyses were performed by using the Cox proportional hazards model. RESULTS: Twenty patients with 29 PALMs underwent 23 RFA sessions. Technical efficacy was achieved in 28 PALMs (28/29, 96.6%). The mean overall survival (OS) after RFA was 14.6 months and the 1-, 2-year survival rates were 39.5%, 18.1%, respectively. With multivariate analysis, abnormal serum levels of CA199 (p = 0.023) and extrahepatic metastasis before RFA (p = 0.038) were identified as independent prognostic factors for OS in patients with PALM. Additionally, the mean progression-free survival (PFS) after RFA was 11.5 months and 1-, 2- year survival rates were 26.0%, 17.3%, respectively. With multivariate analysis, abnormal serum levels of CA199 (p = 0.016) and extrahepatic metastasis before RFA (p = 0.043) were also identified as independent prognostic factors for PFS in patients with PALM. CONCLUSION: RFA is a safe and effective treatment for patients with PALM, especially in patients with normal serum level of CA199 or the patients without extrahepatic metastases before RFA.


Assuntos
Adenocarcinoma , Neoplasias Hepáticas , Neoplasias Pancreáticas , Ablação por Radiofrequência , Idoso , Humanos , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/patologia , Neoplasias Hepáticas/cirurgia , Masculino , Pessoa de Meia-Idade , Neoplasias Pancreáticas/diagnóstico por imagem , Neoplasias Pancreáticas/cirurgia , Ablação por Radiofrequência/métodos , Ultrassonografia de Intervenção
6.
Med Sci Monit ; 26: e923424, 2020 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-32817595

RESUMO

BACKGROUND The aim of this study was to analyze the clinical application of cortex phellodendri compound fluid (CPCF) in the treatment of diabetic foot ulcers. MATERIAL AND METHODS From January 2012 to December 2015, a total of 720 cases of diabetic foot ulcers (DFU) were randomly assigned into an experimental group (n=540) that was treated by CPCF and a control group (n=180) that was treated by a Kangfuxin solution (KFS). After 4 weeks of treatment, their ulcer area, serum growth factor, clinical total effective rate, and incidence of adverse events were assessed. RESULTS There were 720 patients who completed the trial. The experimental group was superior to the control group in reducing ulcer area, increasing growth factor content, and total effective rate (P<0.05). There was no significant difference in the adverse events rates between the 2 groups. CONCLUSIONS CPCF external treatment of diabetic foot ulcer can promote ulcer healing and increase the concentration of growth factors, and it is safe and reliable.


Assuntos
Pé Diabético/tratamento farmacológico , Medicamentos de Ervas Chinesas/administração & dosagem , Medicamentos de Ervas Chinesas/efeitos adversos , Materia Medica/administração & dosagem , Materia Medica/efeitos adversos , Phellodendron/química , Fitoterapia/efeitos adversos , Administração Cutânea , Idoso , Pé Diabético/sangue , Fator de Crescimento Epidérmico/sangue , Feminino , Fatores de Crescimento de Fibroblastos/sangue , Humanos , Masculino , Pessoa de Meia-Idade , Resultado do Tratamento , Fator A de Crescimento do Endotélio Vascular/sangue , Cicatrização/efeitos dos fármacos
7.
Heliyon ; 10(4): e25762, 2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38390125

RESUMO

Background: Diabetic ulcers (DUs) typically occur in patients with vascular diseases and diabetes. Extracellular vesicles secreted by bone marrow-derived stem cells (BMSC-EVs) represent a cell-free therapy that has emerged as a promising alternative for treating DU, especially due to significant advancements in the understanding of their role in promoting angiogenesis; however, their application in DU treatment remains in the preclinical stage, and their effectiveness is still uncertain. Therefore, we conducted this meta-analysis to evaluate the therapeutic efficacy of BMSC-EVs in treating DU and to expedite the clinical translation of BMSC-EV therapy for DU. Methods: We conducted a comprehensive search of PubMed, Cochrane Library, MEDLINE, EMBASE, China National Knowledge Infrastructure (CNKI), Wanfang Database, VIP Database, and our self-constructed database of Chinese Biomedical Literature up to May 2023 to identify preclinical studies related to the therapeutic use of extracellular vesicles secreted by bone marrow-derived stem cells for treating diabetic ulcers. Outcome measures included wound healing rate, neovascularization density, a-sma, and CD31. RevMan 5 software was employed for all statistical analyses. Results: In this meta-analysis, a total of 11 studies involving 103 animals were identified. The pooled analysis indicated that BMSC-EV treatment showed a superior wound healing rate compared to that of the control group (SMD = 1.06, 95% CI [0.52, 1.60], P = 0.0001). In the subgroup analysis, EV combined with new materials or drug therapy performed better than the sole injection of extracellular vesicles (SMD = 1.85, 95% CI [0.87, 2.82], P < 0.00001). BMSC-EV treatment also resulted in a higher number of neovascular structures compared to the control group(SMD = 5.80, 95% CI[0.89,10.71], P = 0.006). In the subgroup analysis, EV combined therapy showed a significant difference in the number of blood vessels compared to the sole injection of extracellular vesicles (SMD = 4.90, 95% CI[2.64,7.15], P < 0.00001). However, BMSCs-EV treatment did not demonstrate any statistically significant difference in the angiogenesis-related indicators CD31 and α-SMA compared to the control group (SMD = 1.61, 95% CI[-0.51,3.74], P = 0.14). Conclusion: According to the current meta-analysis, BMSC-EV therapy can enhance the healing of diabetic ulcers and promote wound angiogenesis, particularly when used in combination with novel dressings or other drugs, which further accelerates the healing process of diabetic ulcers. To establish the most effective parameters for EV treatment in diabetic ulcers, future research should promptly progress into clinical trials.

8.
J Orthop Surg Res ; 18(1): 80, 2023 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-36721171

RESUMO

Panax notoginseng saponins (PNSs) have been found as the major active ingredient of Panax notoginseng (Burkill) F.H.Chen (PN) leaves, which has the effect of reducing inflammatory response, facilitating fibroblast proliferation, as well as promoting angiogenesis. This study aimed to investigate the molecular basis of PNS combined with bone mesenchymal stem cells (BMSCs) for treating diabetic cutaneous ulcers (DCU) and its mechanism of action. METHODS: A total of 75 SD rats were selected to make diabetic cutaneous ulcers model. According random number table method, the rats were randomly divided into a control group, a DCU group, a BMSCs group, a PNS group and BMSCs + PNS group. Five groups of rats were given without treatment. After being treated for 7 days, the rats were anesthetized with pentobarbital, and granulation tissue was collected from the central point of the wound. They were used for pathological analysis, Western blot (WB) and polymerase chain reaction (PCR) assays. RESULTS: The wound healing area was the largest in the BMSCs + PNS group. HE staining results showed that the PNS + BMSCs group could promote the formation of new epidermis and reduce the infiltration of inflammatory cells. Immunohistochemistry (IHC) results showed that the PNS + BMSCs group could up-regulate the expression of Ki67 protein and cell proliferation. In addition, PNS combined with BMSCs up-regulated the expression of miR-146-5p and down-regulated the expression of IL-1ß, IL-6 and TNF-α, IRAK1, TRAF6 and p65 in the NF-κB signaling pathway (p < 0.05). CONCLUSIONS: PNS combined with bone mesenchymal stem cell transplantation up-regulated miR-146a-5p targeting and binding to IRAK1/TRAF6, inhibiting the activation of NF-κB pathway, which reduced the inflammatory response of DCU and facilitated the skin healing of DCU. Thus, this study provides a theoretical basis and a novel therapeutic option for the treatment of DFU with PNS combined with BMSCs.


Assuntos
Complicações do Diabetes , Diabetes Mellitus , Transplante de Células-Tronco Mesenquimais , MicroRNAs , Panax notoginseng , Animais , Ratos , Ratos Sprague-Dawley , NF-kappa B , Fator 6 Associado a Receptor de TNF , Úlcera , MicroRNAs/genética , Quinases Associadas a Receptores de Interleucina-1/genética
9.
J Funct Biomater ; 13(4)2022 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-36547563

RESUMO

Enamel demineralization around brackets is a relatively common complication of fixed orthodontic treatment, which seriously affects the aesthetics of teeth. In this study, a novel orthodontic adhesive containing polycaprolactone−gelatin−silver nanoparticles (PCL−gelatin−AgNPs) composite fibers was prepared to prevent enamel demineralization of orthodontic treatment. First, PCL−gelatin−AgNPs fibers film prepared by electrospinning was made into short fibers and added to traditional orthodontic adhesives (Transbond XT, 3M Unitek) in three different ratios to design a series of composite adhesives containing antibacterial materials. The antimicrobial performance of the control product and the three samples were then evaluated by bacterial live/dead staining, colony-forming unit (CFU) counts, tensile bond strength (TBS), and adhesive residue index (ARI) scores. The composite adhesives' antimicrobial properties increased with the increasing content of PCL−gelatin−AgNPs short fibers. The addition of complex antimicrobial fibers to 3M Transbond XT adhesive can significantly reduce the CFU of bacterial biofilms (p < 0.05). The bacterial survival rate on the surface of the specimen decreased with the increase of PCL−gelatin−AgNPs short fibers (p < 0.05). The TBS and ARI values (n = 10) indicated that adding PCL−gelatin−AgNPs short fibers had no significant adverse effect on adhesion. Therefore, adding PCL−gelatin−AgNPs short fibers makes it possible to fabricate orthodontic adhesives with strong antibacterial properties without compromising the bonding ability, which is essential for preventing enamel demineralization around the brackets.

10.
Materials (Basel) ; 15(5)2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-35268978

RESUMO

Titanium alloy is widely applied in aerospace, medical, shipping and other fields due to its high specific strength and low density. The purpose of this study was to analyze the formability of Ti6Al4V alloys at elevated temperatures. An accurate constitutive model is the basic condition for accurately simulating the plastic forming of materials, and it is an important basis for optimizing the parameters of the hot forging forming process. In this study, the optimization algorithm was used to accurately identify the high-temperature constitutive model parameters of Ti6Al4V titanium alloy, and the hot working diagram was established to optimize the hot forming process parameters. The optimal forming conditions of Ti6Al4V titanium alloy are given. Ti6Al4V alloy was subjected to high-temperature compression tests at 800-1000 °C and at strain rates of 0.01-5 s-1 on a Gleeble-1500D thermal/mechanical simulation machine. Each parameter of the Hansel-Spittel constitutive model was taken as an independent variable, and the accumulated error between the stress calculated by the constitutive model and the stress obtained by experimentation was used as an objective function. Based on response surface methodology, an inverse optimization method for identifying the parameters of the high-temperature constitutive model of Ti6Al4V alloy is proposed in this paper. An orthogonal test design was adopted to obtain sample point data, and a third-order response surface approximate model was established. The genetic algorithm (GA) was applied to reversely optimize the parameters of the constitutive model. To verify the accuracy of the optimized constitutive model, the average absolute relative error (AARE) and correlation coefficient (R) were used to evaluate the reliability of optimized constitutive model. The R value of the model was 0.999, and the AARE value was 0.048, respectively, indicating that the established high-temperature constitutive model for Ti6Al4V alloy has good calculation accuracy. The flow stress behavior of the material could be accurately delineated. Meanwhile, in order to study the formability of Ti6Al4V alloy, the hot processing map of the alloy, based on a dynamic material model, was established in this paper. The optimum hot working domains of the Ti6Al4V alloy were determined within 840-920 °C/0.01-0.049 s-1 and 940-980 °C/0.11-1.65 s-1; the hot processing map was verified in combination with the microstructure, and the fine and equiaxed grains and a large amount of ß phase could be found at 850 °C/0.01 s-1.

11.
Front Public Health ; 10: 1023022, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36582374

RESUMO

"Re-visits and drug renewal" is difficult for chronic disease patients during COVID-19 and will continue in the post-pandemic era. To overcome this dilemma, the scenario of chronic disease diagnosis and treatment systems was set, and an evolutionary game model participated by four stakeholder groups including physical medical institutions, medical service platforms, intelligent medical device providers, and chronic disease patients, was established. Ten possible evolutionary stabilization strategies (ESSs) with their mandatory conditions were found based on Lyapunov's first method. Taking cardiovascular and cerebrovascular diseases, the top 1 prevalent chronic disease, as a specific case context, and resorting to the MATLAB simulation, it is confirmed that several dual ESSs and four unique ESS circumstances exist, respectively, and the evolution direction is determined by initial conditions, while the evolution speed is determined by the values of the conditions based on the quantitative relations of benefits, costs, etc. Accordingly, four governance mechanisms were proposed. By their adjustment, the conditions along with their values can be interfered, and then the chronic disease diagnosis and treatment systems can be guided toward the desired direction, that is, toward the direction of countermeasure against the pandemic, government guidance, global trends of medical industry development, social welfare, and lifestyle innovation. The dilemma of "Re-visits and drug renewal" actually reflects the uneven distribution problem of qualified medical resources and the poor impact resistance capability of social medical service systems under mass public emergency. Human lifestyle even the way of working all over the world will get a spiral upgrade after experiencing COVID-19, such as consumption, and meeting, while medical habits react not so rapidly, especially for mid or aged chronic disease patients. We believe that telemedicine empowered by intelligent medical devices can benefit them and will be a global trend, governments and the four key stakeholders should act according to the governance mechanisms suggested here simultaneously toward novel social medical ecosystems for the post-pandemic era.


Assuntos
COVID-19 , Telemedicina , Humanos , Idoso , COVID-19/diagnóstico , COVID-19/epidemiologia , Ecossistema , Pandemias , Telemedicina/métodos , Doença Crônica
12.
Front Immunol ; 13: 1016214, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36685538

RESUMO

The innate immune response is a host defense mechanism that induces type I interferon and proinflammatory cytokines. Tripartite motif (TRIM) family proteins have recently emerged as pivotal regulators of type I interferon production in mammals. Here, we first identified duck TRIM29, which encodes 571 amino acids and shows high sequence homology with other bird TRIM29 proteins. DuTRIM29 inhibited IFN-ß and IRF7 promoter activation in a dose-dependent manner and downregulated the mRNA expression of IFN-ß, IRF7, Mx and IL-6 mediated by duRIG-I. Moreover, duTRIM29 interacted and colocalized with duMAVS in the cytoplasm. DuTRIM29 interacted with duMAVS via its C-terminal domains. In addition, duTRIM29 inhibited IFN-ß and IRF7 promoter activation and significantly downregulated IFN-ß and immune-related gene expression mediated by duMAVS in ducks. Furthermore, duTRIM29 induced K29-linked polyubiquitination and degradation of duMAVS to suppress the expression of IFN-ß. Overall, our results demonstrate that duTRIM29 negatively regulates type I IFN production by targeting duMAVS in ducks. This study will contribute to a better understanding of the molecular mechanism regulating the innate immune response by TRIM proteins in ducks.


Assuntos
Patos , Interferon Tipo I , Animais , Interferon beta/metabolismo , Imunidade Inata , Expressão Gênica , Mamíferos/metabolismo
13.
Anatol J Cardiol ; 25(9): 630-637, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34498594

RESUMO

OBJECTIVE: In this study, we aimed to evaluate the possible function of miR-130a in atherosclerosis (AS), protection against AS, and its molecular biological mechanism. METHODS: Apoe-/- mice were fed a high-fat diet as the AS mice model. Human umbilical vein endothelial cells (HUVECs) were used as in vitro model. Serum samples or cells were used to measure the expression of inflammation. Serum samples or cells were used to determine MiRNA expression profiles using the edgeR tool from Bioconductor. Western Blot analysis was used to assess protein expressions of proliferator-activated receptor γ (PPARγ) and nuclear factor (NF)-κB. RESULTS: MiRNA-130a expression was up-regulated in atherosclerotic mice. In addition, over-expression of miRNA-130a promoted inflammation factors [tumor necrosis factor (TNF)-α and interleukin (IL)-1ß, IL-6, and IL-8] in the in vitro model of AS. However, down-regulation of miRNA-130a reduced inflammation (suppressed TNF-α, IL-1ß, IL-6 and IL-8) in the in vitro model. Furthermore, over-expression of miRNA-130a could also suppress the protein expression of PPARγ and induce NF-κB protein expression in the in vitro model. However, suppression of miRNA-130a induced the protein expression of PPARγ and suppressed NF-κB protein expression in the in vitro model of AS. Activation of PPARγ reduced the pro-inflammatory effects of miRNA-130a on the AS-induced in vitro model. CONCLUSION: These results strongly support that miRNA-130a suppression can protect against atherosclerosis through inhibiting inflammation by regulating the PPARγ/ NF-κB expression.


Assuntos
Aterosclerose , MicroRNAs , PPAR gama/genética , Animais , Aterosclerose/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Inflamação , Camundongos , MicroRNAs/genética , Receptores Ativados por Proliferador de Peroxissomo
14.
Hua Xi Kou Qiang Yi Xue Za Zhi ; 39(2): 143-152, 2021 Apr 01.
Artigo em Zh | MEDLINE | ID: mdl-33834668

RESUMO

OBJECTIVES: This study aimed to explore the changes in the expression of the characteristic transcription factor retinoid related orphan receptor γt (RORγt) and the cytokine interleukin-17 (IL-17) of T helper cell 17 (Th17) in the pressure side of the periodontal tissue of rats under different orthodontic forces. Their effects on the expression of osteoprotegerin (OPG) and the quantity of osteoclast (OC) were also explored. The role of Th17 cell in alveolar bone remodeling under different forces was preliminarily investigated. METHODS: A total of 108 rats were chosen and randomly divided into three groups. Mesial forces of 0, 50, and 100 g were loaded on the maxillary first molar in the three groups. The rats were executed at 0, 1, 3, 5, 7, and 14 days. The expression of RORγt mRNA was quantified by real-time quantitative polymerase chain reaction. The expression of IL-17 protein was quantified by enzyme linked immunosorbent assay. The expression levels of RORγt and OPG proteins were quantified, and the quantity of OC was counted via immunohistochemistry. RESULTS: The expression levels of RORγt and IL-17 and the quantity of OC increased first and then decreased in the 50 and 100 g groups, and the peak values of the two groups were on days 5 and 7, respectively. The expression levels in the 50 g group basically recovered to normal level on day 14, while that in the 100 g group remained at a high level. The expression levels in the 50 g group were higher than those in the 0 g group and lower than those in the 100 g group. The expression of OPG in the 50 g group decreased first, then increased, and finally decreased. It basically recovered to normal level on day 14. The expression of OPG in the 100 g group decreased first and then increased. It remained at a high level on day 14. The expression in the 50 g group was significantly higher than that in the 0 g group on day 7, while the expression in the 100 g group was significantly higher than that in the 0 g group on day 14. CONCLUSIONS: RORγt, IL-17, and OPG were expressed regularly over time under different orthodontic forces, indicating that Th17 participated in the process of bone resorption on the pressure side of periodontal tissue by secreting IL-17.


Assuntos
Reabsorção Óssea , Citocinas , Animais , Interleucina-17 , Dente Molar , Membro 3 do Grupo F da Subfamília 1 de Receptores Nucleares , Osteoclastos , Osteoprotegerina , Ratos , Células Th17 , Técnicas de Movimentação Dentária
15.
Materials (Basel) ; 14(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919734

RESUMO

X12 (X12CrMoWVNbN10-1-1) ferritic heat resistant steel is an important material for the production of new-generation ultra-supercritical generator rotors. Hot compression tests of X12 ferritic heat-resistant steel were performed via a Gleeble-1500D testing machine under temperatures of 1050-1250 °C and strain rates of 0.05-5 s-1. In order to provide material model data for finite element simulations and accurately predict the hot deformation behavior, a reverse optimization method was proposed to construct elevated temperature constitutive models of X12 ferritic heat-resistant steel in this paper, according to the Hansel-Spittel constitutive model. To verify the accuracy of the model, the predicted and experimental values of the constitutive model were compared. The results indicated that the model had a high prediction accuracy. Meanwhile, the correlation coefficient between the experimental value and the predicted value of constitutive model was 0.97833. For further verification of the accuracy of the model, it was implemented in finite element FORGE@ software to simulate the compression tests of different samples under different conditions. Comparing actual displacement-load curves with displacement-load curves acquired through finite element simulations, the results indicated that displacement-load curves predicted by the model were very consistent with actual displacement-load curves, which verified the accuracy of the model. Moreover, to research the optimal processing parameters of the material, hot processing maps were drawn according to the dynamic material model. In terms of microstructure evolution, a characteristic area distribution map of the hot processing map was established. Therefore, the optimal hot forming parameters regions were in the range of 1150-1200 °C/0.05-0.62 s-1 for X12 ferritic heat-resistant steel.

16.
Materials (Basel) ; 14(9)2021 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-33925819

RESUMO

As a novel kind of cold roller steel, Cr8 alloy steel has the characteristics of high hardness, high wear resistance and good toughness, which can effectively prolong the service life of the roller that is an important part of the steel rolling mill. How to accurately define the constitutive model parameters of metal materials is the major problem, because it seriously affects the accuracy of numerical simulation results of the roller hot forming process. In the study of Cr8 alloy steel's thermal deformation behavior of the present paper, the high temperature compression test was done on a Gleebel-1500D thermal/force simulation testing machine. A novel method of parameter identification was proposed based on inverse optimization. The Hansel-Spittel constitutive model was established by using the inverse optimization method. To carry out the verification on the accuracy of the established constitutive model, the predicted flow-stress of constitutive model was made a contrast to the experimental flow-stress, and the standard statistical parameters were also applied to further evaluation. The results showed a relatively high prediction accuracy of the Hansel-Spittel constitutive model based on the inverse optimization algorithm. Meanwhile, to obtain optimal parameters of Cr8 alloy steel in the thermal processing, 3D thermal processing maps concerning strain-rate, strain and temperature were built based on the dynamic material model. According to the 3D processing map, the most adequate thermal processing parameters of Cr8 alloy steel were obtianed as follows: strain 0.2-0.4, strain-rate 0.05-0.005 s-1, temperature 1100-1150 °C.

17.
Materials (Basel) ; 14(8)2021 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-33919911

RESUMO

In order to avoid the stress shielding phenomenon in orthopedic bionic bone implantation, it is necessary to consider the design of mechanical compatible implants imitating the host bone. In this study, we developed a novel cancellous bone structure design method aimed at ensuring the mechanical compatibility between the bionic bone and human bone by means of computer-aided design (CAD) and finite element analysis technology (specifically, finite element modeling (FEM)). An orthogonal lattice model with volume porosity between 59% and 96% was developed by means of CAD. The effective equivalent elastic modulus of a honeycomb structure with square holes was studied by FEM simulation. With the purpose of verifying the validity of the cancellous bone structure design method, the honeycomb structure was fabricated by selective laser sintering (SLS) and the actual equivalent elastic modulus of the honeycomb structure was measured with a uniaxial compression test. The experimental results were compared with the FEM values and the predicted values. The results showed that the stiffness values of the designed structures were within the acceptable range of human cancellous bone of 50-500 MPa, which was similar to the stiffness values of human vertebrae L1 and L5. From the point of view of mechanical strength, the established cellular model can effectively match the elastic modulus of human vertebrae cancellous bone. The functional relationship between the volume porosity of the nylon square-pore honeycomb structure ranging from 59% to 96% and the effective elastic modulus was established. The effect of structural changes related to the manufacture of honeycomb structures on the equivalent elastic modulus of honeycomb structures was studied quantitatively by finite element modeling.

18.
Cells ; 10(2)2021 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-33671534

RESUMO

The fertilised chick egg and particularly its chorioallantoic membrane (CAM) have drawn continuing interest in biomedicine and bioengineering fields, especially for research on vascular study, cancer, drug screening and development, cell factors, stem cells, etc. This literature review systemically introduces the CAM's structural evolution, functions, vascular features and the circulation system, and cell regulatory factors. It also presents the major and updated applications of the CAM in assays for pharmacokinetics and biodistribution, drug efficacy and toxicology testing/screening in preclinical pharmacological research. The time course of CAM applications for different assays and their advantages and limitations are summarised. Among these applications, two aspects are emphasised: (1) potential utility of the CAM for preclinical studies on vascular-disrupting agents (VDAs), promising for anti-cancer vascular-targeted therapy, and (2) modern imaging technologies, including modalities and their applications for real-time visualisation, monitoring and evaluation of the changes in CAM vasculature as well as the interactions occurring after introducing the tested medical, pharmaceutical and biological agents into the system. The aim of this article is to help those working in the biomedical field to familiarise themselves with the chick embryo CAM as an alternative platform and to utilise it to design and optimise experimental settings for their specific research topics.


Assuntos
Pesquisa Biomédica/métodos , Membrana Corioalantoide/metabolismo , Animais , Embrião de Galinha , Membrana Corioalantoide/diagnóstico por imagem
19.
Materials (Basel) ; 14(3)2021 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-33540797

RESUMO

X12 alloy steel is a new generation material for manufacturing ultra-supercritical generator rotors. Cracks will appear on the forgings during the forging process and the rotors will be scrapped in serious cases. To optimize the forging process of the rotor and avoid the occurrence of crack defects in the hot forming process, based on Oyane damage model, a high temperature damage model of X12 alloy steel was proposed by introducing the influences of temperature and strain rate on the damage evolution. A reverse analysis method was proposed to determine the critical damage value of Oyane damage model by comparing experimental and simulated fracture displacement in the tensile tests. Then, the critical damage value was determined as a function of temperature and strain rate. The high temperature damage model was combined to the commercial finite element software FORGE® to simulate the high temperature tensile test. The accuracy of the damage model was verified by comparing the difference of the fracture displacement between simulated and experimental samples. Additionally, as stress triaxiality is a significant factor influencing the damage behavior of ductile materials, the effects of temperature and strain rate on the stress triaxiality of X12 alloy steel was analyzed by simulating the high temperature tensile process, and the damage mechanism of X12 alloy steel under high stress triaxiality was analyzed by SEM (Scanning Electron Microscope).

20.
Materials (Basel) ; 13(18)2020 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-32947999

RESUMO

As a new-type of ultra-supercritical HI-IP rotor steel, X12CrMoWVNbN10-1-1 alloy steel has excellent integrative performance, which can effectively improve the power generation efficiency of the generator set. In this paper, uniaxial thermal compression tests were carried out over a temperature range of 950-1200 °C and strain rates of 0.05-5 s-1 with a Gleeble-1500D thermal simulation testing machine. Moreover, based on hot compression experimental data and the theory of processing diagrams, in combination with the dynamic material model, a three-dimensional (3-D) thermal processing map considering the effect of strain was constructed. It was concluded that optimum thermal deformation conditions were as follows: the temperature range of 1150-1200 °C, the strain rate range of 0.05-0.634 s-1. Through secondary development of the finite element (FE) software FORGE®, three-dimensional thermal processing map data were integrated into finite element software FORGE®. The distributions of instability coefficient and power dissipation coefficient were obtained over various strain rates and temperatures of the Ø 8 × 12 mm cylinder specimen by using finite element simulation. It is shown that simulation results are consistent with the microstructure photos. The method proposed in this paper, which integrates the three-dimensional processing map into the finite element software FORGE® (Forge NxT 2.1, Transvalor, Nice, France), can effectively predict the formability of X12CrMoWVNbN10-1-1 alloy steel.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA