Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Elife ; 122024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38686992

RESUMO

Dissection of neural circuitry underlying behaviors is a central theme in neurobiology. We have previously proposed the concept of chemoconnectome (CCT) to cover the entire chemical transmission between neurons and target cells in an organism and created tools for studying it (CCTomics) by targeting all genes related to the CCT in Drosophila. Here we have created lines targeting the CCT in a conditional manner after modifying GFP RNA interference, Flp-out, and CRISPR/Cas9 technologies. All three strategies have been validated to be highly effective, with the best using chromatin-peptide fused Cas9 variants and scaffold optimized sgRNAs. As a proof of principle, we conducted a comprehensive intersection analysis of CCT genes expression profiles in the clock neurons, uncovering 43 CCT genes present in clock neurons. Specific elimination of each from clock neurons revealed that loss of the neuropeptide CNMa in two posterior dorsal clock neurons (DN1ps) or its receptor (CNMaR) caused advanced morning activity, indicating a suppressive role of CNMa-CNMaR on morning anticipation, opposite to the promoting role of PDF-PDFR on morning anticipation. These results demonstrate the effectiveness of conditional CCTomics and its tools created here and establish an antagonistic relationship between CNMa-CNMaR and PDF-PDFR signaling in regulating morning anticipation.


Assuntos
Sistemas CRISPR-Cas , Neurônios , Animais , Neurônios/metabolismo , Neurônios/fisiologia , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Proteínas de Drosophila/metabolismo , Proteínas de Drosophila/genética , Conectoma
2.
Viruses ; 15(1)2023 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-36680218

RESUMO

Oncolytic herpes simplex virus (oHSV) is a type of virus that selectively targets and kills cancer cells, leaving normal cells unharmed. Accurate viral titer is of great importance for the production and application of oHSV products. Droplet digital PCR (ddPCR) is known for having good reproducibility, not requiring a standard curve, not being affected by inhibitors, and being precise even in the detection of low copies. In the present study, we developed a droplet digital PCR assay for the quantification of HSV-1 and applied it in the oHSV production. The established ddPCR showed good specificity, linearity, a low limit of quantification, great reproducibility, and accuracy. The quantification result was well-associated with that of plaque assay and CCID50. Amplification of the purified virus without DNA extraction by ddPCR presented similar results to that from the extracted DNA, confirming the good resistance against PCR inhibitors. With the ddPCR, viral titer could be monitored in real time during the production of oHSV; the optimal harvest time was determined for the best virus yield in each batch. The ddPCR can be used as a useful tool for the quantification of oHSV and greatly facilitate the manufacturing process of oHSV products.


Assuntos
Herpesvirus Humano 1 , Terapia Viral Oncolítica , Herpesvirus Humano 1/genética , Reprodutibilidade dos Testes , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA