Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 580(7801): 65-70, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32238945

RESUMO

The defining characteristic1,2 of Cooper pairs with finite centre-of-mass momentum is a spatially modulating superconducting energy gap Δ(r), where r is a position. Recently, this concept has been generalized to the pair-density-wave (PDW) state predicted to exist in copper oxides (cuprates)3,4. Although the signature of a cuprate PDW has been detected in Cooper-pair tunnelling5, the distinctive signature in single-electron tunnelling of a periodic Δ(r) modulation has not been observed. Here, using a spectroscopic technique based on scanning tunnelling microscopy, we find strong Δ(r) modulations in the canonical cuprate Bi2Sr2CaCu2O8+δ that have eight-unit-cell periodicity or wavevectors Q ≈ (2π/a0)(1/8, 0) and Q ≈ (2π/a0)(0, 1/8) (where a0 is the distance between neighbouring Cu atoms). Simultaneous imaging of the local density of states N(r, E) (where E is the energy) reveals electronic modulations with wavevectors Q and 2Q, as anticipated when the PDW coexists with superconductivity. Finally, by visualizing the topological defects in these N(r, E) density waves at 2Q, we find them to be concentrated in areas where the PDW spatial phase changes by π, as predicted by the theory of half-vortices in a PDW state6,7. Overall, this is a compelling demonstration, from multiple single-electron signatures, of a PDW state coexisting with superconductivity in Bi2Sr2CaCu2O8+δ.

2.
Proc Natl Acad Sci U S A ; 117(26): 14805-14811, 2020 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-32546526

RESUMO

The defining characteristic of hole-doped cuprates is d-wave high temperature superconductivity. However, intense theoretical interest is now focused on whether a pair density wave state (PDW) could coexist with cuprate superconductivity [D. F. Agterberg et al., Annu. Rev. Condens. Matter Phys. 11, 231 (2020)]. Here, we use a strong-coupling mean-field theory of cuprates, to model the atomic-scale electronic structure of an eight-unit-cell periodic, d-symmetry form factor, pair density wave (PDW) state coexisting with d-wave superconductivity (DSC). From this PDW + DSC model, the atomically resolved density of Bogoliubov quasiparticle states [Formula: see text] is predicted at the terminal BiO surface of Bi2Sr2CaCu2O8 and compared with high-precision electronic visualization experiments using spectroscopic imaging scanning tunneling microscopy (STM). The PDW + DSC model predictions include the intraunit-cell structure and periodic modulations of [Formula: see text], the modulations of the coherence peak energy [Formula: see text] and the characteristics of Bogoliubov quasiparticle interference in scattering-wavevector space [Formula: see text] Consistency between all these predictions and the corresponding experiments indicates that lightly hole-doped Bi2Sr2CaCu2O8 does contain a PDW + DSC state. Moreover, in the model the PDW + DSC state becomes unstable to a pure DSC state at a critical hole density p*, with empirically equivalent phenomena occurring in the experiments. All these results are consistent with a picture in which the cuprate translational symmetry-breaking state is a PDW, the observed charge modulations are its consequence, the antinodal pseudogap is that of the PDW state, and the cuprate critical point at p* ≈ 19% occurs due to disappearance of this PDW.

3.
Sci Adv ; 10(37): eadp3487, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39270026

RESUMO

Polaritons are light-matter quasiparticles that govern the optical response of quantum materials at the nanoscale, enabling on-chip communication and local sensing. Here, we report Landau-phonon polaritons (LPPs) in magnetized charge-neutral graphene encapsulated in hexagonal boron nitride (hBN). These quasiparticles emerge from the interaction of Dirac magnetoexciton modes in graphene with the hyperbolic phonon polariton modes in hBN. Using infrared magneto-nanoscopy, we reveal the ability to completely halt the LPP propagation in real space at quantized magnetic fields, defying the conventional optical selection rules. The LPP-based nanoscopy also tells apart two fundamental many-body phenomena: the Fermi velocity renormalization and field-dependent magnetoexciton binding energies. Our results highlight the potential of magnetically tuned Dirac heterostructures for precise nanoscale control and sensing of light-matter interaction.

4.
Nat Nanotechnol ; 18(12): 1409-1415, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37605044

RESUMO

Magnetic fields can have profound effects on the motion of electrons in quantum materials. Two-dimensional electron systems subject to strong magnetic fields are expected to exhibit quantized Hall conductivity, chiral edge currents and distinctive collective modes referred to as magnetoplasmons and magnetoexcitons. Generating these propagating collective modes in charge-neutral samples and imaging them at their native nanometre length scales have thus far been experimentally elusive. Here we visualize propagating magnetoexciton polaritons at their native length scales and report their magnetic-field-tunable dispersion in near-charge-neutral graphene. Imaging these collective modes and their associated nano-electro-optical responses allows us to identify polariton-modulated optical and photo-thermal electric effects at the sample edges, which are the most pronounced near charge neutrality. Our work is enabled by innovations in cryogenic near-field optical microscopy techniques that allow for the nano-imaging of the near-field responses of two-dimensional materials under magnetic fields up to 7 T. This nano-magneto-optics approach allows us to explore and manipulate magnetopolaritons in specimens with low carrier doping via harnessing high magnetic fields.

5.
Sci Rep ; 12(1): 830, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-35039561

RESUMO

We report a Spectroscopic Imaging Scanning Tunneling Microscopy (SI-STM) study of a DyBa2Cu3O7-δ (DBCO) thin film (Tc ~ 79 K) synthesized by the molecular beam epitaxy (MBE). We observed an unusual transfer of spectral weight in the local density of states (LDOS) spectra occurring only within the superconducting gap. By a systematic control of the tip-sample distance and the junction resistance, we demonstrate that the spectral weight transfer can be switched at a nano-meter length scale. These results suggest that an interaction between the STM tip and the sample alters the electronic configurations in the film. This probably originates from a combination of an intrinsic band bending at the interface between the surface and the bulk, and a tip-induced band bending. These results may open a new avenue for band engineering and applications of thin films of high-Tc cuprates.

6.
Nat Commun ; 10(1): 1603, 2019 04 08.
Artigo em Inglês | MEDLINE | ID: mdl-30962440

RESUMO

The superconducting state is formed by the condensation of Cooper pairs and protected by the superconducting gap. The pairing interaction between the two electrons of a Cooper pair determines the gap function. Thus, it is pivotal to detect the gap structure for understanding the mechanism of superconductivity. In cuprate superconductors, it has been well established that the gap may have a d-wave function. This gap function has an alternative sign change in the momentum space. It is however hard to visualize this sign change. Here we report the measurements of scanning tunneling spectroscopy in Bi2Sr2CaCu2O8+δ and conduct the analysis of phase-referenced quasiparticle interference (QPI). We see the seven basic scattering vectors that connect the octet ends of the banana-shaped contour of Fermi surface. The phase-referenced QPI clearly visualizes the sign change of the d-wave gap. Our results illustrate an effective way for determining the sign change of unconventional superconductors.

7.
Sci Adv ; 4(6): eaat1084, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29888330

RESUMO

Topological superconductors are an interesting and frontier topic in condensed matter physics. In the superconducting state, an order parameter will be established with the basic or subsidiary symmetry of the crystalline lattice. In doped Bi2Se3 or Bi2Te3 with a basic threefold symmetry, it was predicted, however, that bulk superconductivity with order parameters of twofold symmetry may exist because of the presence of odd parity. We report the proximity effect-induced superconductivity in the Bi2Te3 thin film on top of the iron-based superconductor FeTe0.55Se0.45. By using the quasiparticle interference technique, we demonstrate clear evidence of twofold symmetry of the superconducting gap. The gap minimum is along one of the main crystalline axes following the so-called Δ4y notation. This is also accompanied by the elongated vortex shape mapped out by the density of states within the superconducting gap. Our results provide an easily accessible platform for investigating possible topological superconductivity in Bi2Te3/FeTe0.55Se0.45 heterostructures.

8.
Nat Commun ; 9(1): 970, 2018 03 06.
Artigo em Inglês | MEDLINE | ID: mdl-29511191

RESUMO

Caroli-de Gennes-Matricon (CdGM) states were predicted in 1964 as low-energy excitations within vortex cores of type-II superconductors. In the quantum limit, the energy levels of these states were predicted to be discrete with the basic levels at ±µΔ2/EF (µ = 1/2, 3/2, 5/2, …) with Δ the superconducting energy gap and EF the Fermi energy. However, due to the small ratio of Δ/EF in most type-II superconductors, it is very difficult to observe the discrete CdGM states, but rather a symmetric peak which appears at zero bias at the vortex center. Here we report the clear observation of these discrete energy levels of CdGM states in FeTe0.55Se0.45. The rather stable energies of these bound state peaks vs. space clearly validate our conclusion. Analysis based on the energies of these CdGM states indicates that the Fermi energy in the present system is very small.

10.
Nat Commun ; 8: 14466, 2017 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-28198378

RESUMO

Topological superconductors are a very interesting and frontier topic in condensed matter physics. Despite the tremendous efforts in exploring topological superconductivity, its presence is however still under heavy debate. The Dirac electrons have been proven to exist on the surface of a topological insulator. It remains unclear whether and how the Dirac electrons fall into Cooper pairing in an intrinsic superconductor with the topological surface states. Here we show the systematic study of scanning tunnelling microscope/spectroscopy on the possible topological superconductor SrxBi2Se3. We first demonstrate that only the intercalated Sr atoms can induce superconductivity. Then we show the full superconducting gaps without any in-gap density of states as expected theoretically for a bulk topological superconductor. Finally, we find that the surface Dirac electrons will simultaneously condense into the superconducting state within the superconducting gap. This vividly demonstrates how the surface Dirac electrons are driven into Cooper pairs.

11.
Nat Commun ; 7: 10565, 2016 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-26822281

RESUMO

In the field of iron-based superconductors, one of the frontier studies is about the pairing mechanism. The recently discovered (Li(1-x)Fe(x))OHFeSe superconductor with the transition temperature of about 40 K provides a good platform to check the origin of double superconducting gaps and high transition temperature in the monolayer FeSe thin film. Here we report a scanning tunnelling spectroscopy study on the (Li(1-x)Fe(x))OHFeSe single crystals. The tunnelling spectrum mimics that of the monolayer FeSe thin film and shows double gaps at about 14.3 and 8.6 meV. Further analysis based on the quasiparticle interference allows us to rule out the d-wave gap, and for the first time assign the larger (smaller) gap to the outer (inner) Fermi pockets (after folding) associating with the dxy (dxz/dyz) orbitals, respectively. The gap ratio amounts to 8.7, which demonstrates the strong coupling mechanism in the present superconducting system.

12.
Sci Rep ; 5: 9408, 2015 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-25797138

RESUMO

The superconducting state is formed by the condensation of a large number of Cooper pairs. The normal state electronic properties can give significant influence on the superconducting state. For usual type-II superconductors, the vortices are cylinder like with a round cross-section. For many two dimensional superconductors, such as Cuprates, albeit the in-plane anisotropy, the vortices generally have a round shape. In this paper we report results based on the scanning tunnelling microscopy/spectroscopy measurements on a newly discovered superconductor Ta4Pd3Te16. The chain-like conducting channels of PdTe2 in Ta4Pd3Te16 make a significant anisotropy of the in-plane Fermi velocity. We suggest at least one anisotropic superconducting gap with gap minima or possible node exists in this multiband system. In addition, elongated vortices are observed with an anisotropy of ξ||b/ξ&bottom⊥b ≈ 2.5. Clear Caroli-de Gennes-Matricon states are also observed within the vortex cores. Our results will initiate the study on the elongated vortices and superconducting mechanism in the new superconductor Ta4Pd3Te16.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA